Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(18): 4501-4510, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37041278

RESUMO

In the present work, the potential benefit of using multi-cumulative trapping headspace extraction was explored by comparing the results using solid-phase microextraction (SPME) coated with divinylbenzene/carboxen/polydimethylsiloxane and a probe-like tool coated with polydimethylsiloxane. The efficiency of a single 30-min extraction, already explored in previous work, was compared with that of multiple shorter extractions. We evaluated three different conditions, i.e., three repeated extractions for 10 min each from different sample vials (for both the probe-like tool and SPME) or from the same vial (for SPME) containing brewed coffee. The entire study was performed using comprehensive two-dimensional gas chromatography coupled with mass spectrometry. The two-dimensional plots were aligned and integrated using a tile-sum approach before any statistical analysis. A detailed comparison of all the tested conditions was performed on a set of 25 targeted compounds. Although a single 30-min extraction using the probe-like tool provided a significantly higher compound intensity than SPME single extraction, the use of multiple shorter extractions with SPME showed similar results. However, multiple extractions with the probe-like tool showed a greater increase in the number of extracted compounds. Furthermore, an untargeted cross-sample comparison was performed to evaluate the ability of the two tested tools and the different extraction procedures in differentiating between espresso-brewed coffee samples obtained from capsules made of different packaging materials (i.e., compostable capsules, aluminum capsules, aluminum multilayer pack). The highest explained variance was obtained using the probe-like tool and multiple extractions (91.6% compared to 83.9% of the single extraction); nevertheless, SPME multiple extractions showed similar results with 88.3% of variance explained.


Assuntos
Café , Odorantes , Café/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Alumínio/análise , Cápsulas , Microextração em Fase Sólida/métodos , Dimetilpolisiloxanos
2.
Anal Bioanal Chem ; 415(13): 2511-2521, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36482082

RESUMO

The present paper discusses the use of a high-concentration-capacity tool, HiSorb, to investigate the impact of capsule material on the aroma profile of espresso-brewed coffee. The specific high-concentration-capacity probe used is characterized by a sorbent volume (63 µL) intermediate between the solid-phase microextraction (SPME) fiber (0.6 µL) and the stir-bar sorptive extraction rod (126 µL). The extraction performance of the HiSorb was compared, in terms of both absolute signal and compound coverage, with both an equivalent sorbent (polydimethylsiloxane) and a divinylbenzene/carboxen/polydimethylsiloxane SPME fiber using both targeted and untargeted approaches. The HiSorb showed superior extraction compared with the SPME fibers. The HiSorb was then optimized in terms of extraction time and temperature and used to investigate the volatile profile of 23 espresso-brewed coffees prepared with capsules made of different materials-aluminum, compostable, and aluminum multilayer pack-prepared using a refillable capsule. Comprehensive two-dimensional gas chromatography equipped with a reverse fill/flush flow modulator and coupled to mass spectrometry was used to obtain a chromatographic fingerprint of the volatile profile of the brewed coffee. The data were aligned and compared using a tile-based approach, and the results were obtained by performing raw data mining within the same software platform. The data mining enabled the extraction of informative features responsible for the differentiation between the different capsule materials, showing a significant depletion in aroma intensity in the compostable capsule.


Assuntos
Café , Odorantes , Cromatografia Gasosa-Espectrometria de Massas/métodos , Café/química , Odorantes/análise , Alumínio/análise , Microextração em Fase Sólida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA