Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Fitoterapia ; 175: 105953, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588905

RESUMO

Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.


Assuntos
Antocianinas , Inflamação , Intestinos , Animais , Humanos , Antocianinas/administração & dosagem , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Dieta Baseada em Plantas
2.
Nat Prod Res ; 38(6): 916-925, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37129014

RESUMO

Obesity is a metabolic disorder with excessive body fat accumulation, increasing incidence of chronic metabolic diseases. Hypertrophic obesity is associated with local oxidative stress and inflammation. Herein, we evaluated the in vitro activity of micromolar concentrations of α-lipoic acid (ALA) on palmitic acid (PA)-exposed murine hypertrophic 3T3-L1 adipocytes, focussing on the main molecular pathways involved in adipogenesis, inflammation, and insulin resistance. ALA, starting from 1 µM, decreased adipocytes hypertrophy, reducing PA-triggered intracellular lipid accumulation, PPAR-γ levels, and FABP4 gene expression, and counteracted PA-induced intracellular ROS levels and NF-κB activation. ALA reverted PA-induced insulin resistance, restoring PI3K/Akt axis and inducing GLUT-1 and glucose uptake, showing insulin sensitizing properties since it increased their basal levels. In conclusion, this study supports the potential effects of low micromolar ALA against hypertrophy, inflammation, and insulin resistance in adipose tissue, suggesting its important role as pharmacological supplement in the prevention of conditions linked to obesity and metabolic syndrome.


Assuntos
Resistência à Insulina , Ácido Tióctico , Animais , Camundongos , Ácido Tióctico/farmacologia , Ácido Palmítico/farmacologia , Fosfatidilinositol 3-Quinases , Adipócitos , Hipertrofia/induzido quimicamente , Obesidade , Inflamação
3.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985768

RESUMO

BACKGROUND: The genus Cistus L. (Cistaceae) includes several medicinal plants growing wild in the Moroccan area. Acne vulgaris (AV) is a chronic skin disorder treated with topical and systemic therapies that often lead to several side effects in addition to the development of antimicrobial resistance. Our study aimed to investigate the bioactivity of extracts of two Moroccan Cistus species, Cistus laurifolius L. and Cistus salviifolius L., in view of their use as potential coadjuvants in the treatment of mild acne vulgaris. METHODS: Targeted phytochemical profiles obtained by HPLC-DAD and HPLC-ESI/MS analyses and biological activities ascertained by several antioxidants in vitro chemical and cell-based assays of the leaf extracts. Moreover, antimicrobial activity against Gram-positive and Gram-negative bacteria, and Candida albicans was evaluated. RESULTS: Analyses revealed the presence of several polyphenols in the studied extracts, mainly flavonoids and tannins. Cistus laurifolius L. and Cistus salviifolius L. possessed good biological properties and all extracts showed antibacterial activity, particularly against Staphylococcus aureus, S. epidermidis, and Propionibacterium acnes, identified as the main acne-causing bacteria. CONCLUSION: The results suggest that examined extracts are promising agents worthy of further studies to develop coadjuvants/natural remedies for mild acne treatment.


Assuntos
Acne Vulgar , Cistus , Cistus/química , Antibacterianos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos/farmacologia , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Testes de Sensibilidade Microbiana
4.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364258

RESUMO

Distillation is the most widely used method to obtain an essential oil from plant material. The biomass used in the process is returned as a solid residue together with variable amounts of water rich in water-soluble compounds, which currently are not addressed to any further application. The scope of this work was to evaluate the phytochemical composition of wastewaters coming from hydrodistillation (DWWs) of five aromatic plants belonging to the Lamiaceae family, and to assess their in vitro antioxidant and anti-inflammatory activities. The phenolic profiles of the DWWs were determined by HPLC-DAD and HPLC-ESI/MS. Free radical scavenging ability, oxygen radical antioxidant capacity and superoxide dismutase mimetic activity of the samples under study were measured. Moreover, to investigate the anti-inflammatory activity of the DWWs, an in vitro experimental model of intestinal inflammation was used. The DWW samples' phytochemical analysis allowed the identification of 37 phenolic compounds, all exhibiting good antioxidant and anti-inflammatory activity. Our study contributes to the knowledge on the polyphenolic composition of the DWWs of five aromatic plants of the Lamiaceae family. The results highlight the presence of compounds with proven biological activity, and therefore of great interest in the pharmaceutical and nutraceutical fields.


Assuntos
Lamiaceae , Lamiaceae/química , Antioxidantes/farmacologia , Antioxidantes/química , Águas Residuárias , Fenóis/química , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Água
5.
Molecules ; 27(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080136

RESUMO

BACKGROUND: The consumption of foods rich in anthocyanins (ACN) have been associated with beneficial properties in chronic inflammatory disorders such as intestinal bowel diseases (IBD). These effects were attributed not only to a direct antioxidant mechanism but also to the modulation of cell redox-dependent signaling. However, ACN bioavailability is low for their poor stability in the digestive tract, so ACN gastrointestinal digestion should be considered. METHODS: To have a more realistic knowledge of the effects of ACN, we performed an in vitro simulated gastrointestinal digestion of an ACN-rich purified and standardized bilberry and blackcurrant extract (BBE), followed by an evaluation of ACN composition modification (HPLC-DAD and pH differential method) and antioxidant activity (FRAP assay). Then, we studied the effects of BBE gastrointestinal extract on Caco-2 exposed to TNF-α. RESULTS: The results confirmed the high instability of ACN in the mild alkaline environment of the small intestine (17% recovery index). However, the digested BBE maintained part of its bioactivity. Additionally, BBE gastrointestinal extract inhibited the TNF-α-induced NF-κB pathway in Caco-2 and activated the Nrf2 pathway. CONCLUSIONS: Although ACN stability is affected by gastrointestinal digestion, the anti-inflammatory and antioxidant activity of digested extracts were confirmed; thus, the loss of ACN can probably be counterweighed by their metabolites. Then, ACN introduced by diet or food supplements could represent an approach for IBD prevention.


Assuntos
Doenças Inflamatórias Intestinais , Ribes , Antocianinas/metabolismo , Antocianinas/farmacologia , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Células CACO-2 , Células Epiteliais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Extratos Vegetais/química , Ribes/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Nat Prod Res ; 36(18): 4768-4775, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34844501

RESUMO

Glycyrrhiza glabra roots have been well studied for their pharmacological activities, whereas less research has been conducted on liquorice aerial parts. Leaves represent a good source of D-pinitol, useful in the treatment of insulin resistance-related pathologies. Herein, we analyzed the in vitro effects of a D-pinitol-rich methanolic extract from Glycyrrhiza glabra leaves (GGLME) against lipotoxicity-related hypertrophy, inflammation, and insulin resistance in 3T3-L1 adipocytes exposed to palmitic acid (PA), comparing its activity with D-pinitol. GGLME pretreatment decreased lipid deposition, PPAR-γ, and NF-κB pathway induced by PA, similarly to D-pinitol, and improved insulin sensitivity, in presence or not of PA, increasing PI3K, pAkt, and GLUT1 levels. This study confirms that liquorice leaves, considered a waste of resource, could potentially be reused, and support further in vivo studies on animal and human models. In conclusion, liquorice leaves extract represents a potential candidate for prevention of metabolically induced inflammation, frequently leading to metabolic disorders.


Assuntos
Glycyrrhiza , Resistência à Insulina , Adipócitos , Animais , Humanos , Hipertrofia/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inositol/análogos & derivados , Insulina/metabolismo , Insulina/farmacologia , Palmitatos , Ácido Palmítico , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais
7.
Arch Physiol Biochem ; 128(5): 1225-1234, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32476488

RESUMO

Background: Glycyrrhyza glabra L. is one of the most popular medicinal plant in the world, its roots having been used since ancient times in many traditional medicines. On the contrary, scarce attention has been dedicated to liquorice aerial parts. Previous studies showed the presence of a large group of polyphenols and a consistent amount of d-pinitol in the leaf extract.Methods: The methanolic extract from G. glabra leaves was profiled for its content in polyphenols; the amount of d-pinitol was also measured with two independent methods (HPLC-ELSD and NMR). The extract was tested for its in vitro protective effects against insulin resistance-related endothelial dysfunction in human umbilical vein endothelial cells exposed to palmitic acid, which is the most prevalent saturated free fatty acid in circulation.Results: Methanolic extract from liquorice leaves has a protective effect against the lipotoxicity-associated alterations of insulin pathway in human endothelial cells, similarly to what observed with pure d-pinitol.Conclusions: Liquorice leaves are to be considered a waste product which gives a phytocomplex endowed with interesting potential therapeutic properties, moreover the use of a liquorice leaves phytocomplex rather than a pure compound allows avoiding a series of isolation/purification procedures and can be easily scaled up for industrial applications.


Assuntos
Glycyrrhiza , Insulina , Células Endoteliais , Ácidos Graxos não Esterificados , Glycyrrhiza/química , Humanos , Inositol/análogos & derivados , Ácido Palmítico/toxicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Resíduos
8.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361819

RESUMO

One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the "hybrid strategy", namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term "hybrid" has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.


Assuntos
Produtos Biológicos/uso terapêutico , Curcumina/uso terapêutico , Neoplasias/tratamento farmacológico , Resveratrol/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Produtos Biológicos/química , Curcumina/química , Sistemas de Liberação de Medicamentos , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Resveratrol/química , Estilbenos/química
9.
Chem Biodivers ; 18(8): e2100316, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34114723

RESUMO

The genus Rhanterium (Asteraceae) is a widely distributed medicinal plant throughout western North Africa and some Rhanterium species are used in folk medicine. The aim of research was to investigate methanolic extracts from different parts (flowers, leaves, and stems) of Tunisian Rhanterium suaveolens as potential sources of bioactive products useful for healthy purposes. In particular, were analyzed the phenolic composition of these extracts and their antioxidant, anti-inflammatory, and anti-tyrosinase properties. The phytochemical analyses were performed using standard colorimetric procedures, HPLC-DAD and HPLC-DAD-ESI-MS. Then, several in vitro cell-free assays have been used to estimate the antioxidant/free radical scavenging capability of the extracts. Moreover, in vitro, and in vivo anti-melanogenesis activities of these extracts were tested, respectively, with the tyrosinase inhibition assay and the Zebrafish embryo model. Finally, the anti-inflammatory potential of these extracts in an in vitro model of acute intestinal inflammation in differentiated Caco-2 cells was evaluated. The R. suaveolens extracts under study appeared particularly rich in flavonols and hydroxycinnamic acids and all extracts appeared endowed with good antioxidant/free radical scavenging properties, being the flower extracts slightly more active than the others. Moreover, R. suaveolens flowers extract was able to inhibit in vitro tyrosinase activity and exhibited bleaching effects on the pigmentation of zebrafish embryos. Furthermore, all extracts showed good anti-inflammatory activity in intestinal epithelial cells as demonstrated by the inhibition of TNF-α-induced gene expression of IL-6 and IL-8. R. suaveolens aerial parts may be considered as a potential source of whitening agents, as well as of agents for the treatment of disorders related to oxidative stress and inflammation.


Assuntos
Anti-Inflamatórios/química , Asteraceae/química , Inibidores Enzimáticos/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/química , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Asteraceae/metabolismo , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/química , Ácidos Cumáricos/isolamento & purificação , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/farmacologia , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Flavonóis/química , Flavonóis/isolamento & purificação , Flavonóis/metabolismo , Flavonóis/farmacologia , Humanos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Tunísia , Peixe-Zebra/metabolismo
10.
Comput Biol Med ; 134: 104538, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34116362

RESUMO

The outbreak of COVID-19 disease caused by SARS-CoV-2, along with the lack of targeted medicaments, forced the scientific world to search for new antiviral formulations. In the current emergent situation, drug repurposing of well-known traditional and/or approved drugs could be the most effective strategy. Herein, through computational approaches, we aimed to screen 14 natural compounds from limonoids and terpenoids class for their ability to inhibit the key therapeutic target proteins of SARS-CoV-2. Among these, some limonoids, namely deacetylnomilin, ichangin and nomilin, and the terpenoid ß-amyrin provided good interaction energies with SARS-CoV-2 3CL hydrolase (Mpro) in molecular dynamic simulation. Interestingly, deacetylnomilin and ichangin showed direct interaction with the catalytic dyad of the enzyme so supporting their potential role in preventing SARS-CoV-2 replication and growth. On the contrary, despite the good affinity with the spike protein RBD site, all the selected phytochemicals lose contact with the amino acid residues over the course of 120ns-long molecular dynamics simulations therefore suggesting they scarcely can interfere in SARS-CoV-2 binding to the ACE2 receptor. The in silico analyses of docking score and binding energies, along with predicted pharmacokinetic profiles, indicate that these triterpenoids might have potential as inhibitors of SARS-CoV-2 Mpro, recommending further in vitro and in vivo investigations for a complete understanding and confirmation of their inhibitory potential.


Assuntos
COVID-19 , SARS-CoV-2 , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Terpenos
11.
Chem Biodivers ; 18(6): e2100185, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860977

RESUMO

The genus Rumex (Polygonaceae) is distributed worldwide and the different species belonging to it are used in traditional medicine. The present study aimed at the evaluation of the phytochemical profile and the biochemical properties of methanolic extracts from different parts (roots, stems, and leaves) of Rumex roseus, a wild local Tunisian plant traditionally used as food. The phytochemical analysis on the extracts was performed using standard colorimetric procedures, HPLC-DAD, and HPLC-DAD-ESI-MS; then, several in vitro cell-free assays have been used to estimate their antioxidant/free radical scavenging capability (TAC-PM, DPPH, TEAC, FRAP, ORAC, SOD-like activity, and HOCl-induced albumin degradation). Additionally, anti-inflammatory effect of these extracts was evaluated in an in vitro model of acute intestinal inflammation in differentiated Caco-2 cells. The results showed that the methanolic extracts from stems and, especially, leaves contain substantial amounts of flavones (apigenin and luteolin, together with their derivatives), while the extract from roots is characterized by the presence of tannins and quinic acid derivatives. All the extracts appeared endowed with excellent antioxidant/free radical scavenging properties. In particular, the extract from roots was characterized by a remarkable activity, probably due to its different and peculiar polyphenolic composition. Furthermore, both Rumex roseus roots and stems extracts demonstrated an anti-inflammatory effect in intestinal epithelial cells, reducing TNF-α-induced gene expression of IL-6 and IL-8. In conclusion, R. roseus methanolic extracts have shown to be potential sources of bioactive compounds to be used in the prevention and treatment of pathologies related to oxidative stress and inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Metanol/química , Compostos Fitoquímicos/farmacologia , Rumex/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Células CACO-2 , Bovinos , Células Cultivadas , Humanos , Camundongos , Células NIH 3T3 , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Picratos/antagonistas & inibidores , Soroalbumina Bovina/antagonistas & inibidores
12.
Phytother Res ; 35(8): 4616-4625, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33822421

RESUMO

The spread of SARS-CoV-2, along with the lack of targeted medicaments, encouraged research of existing drugs for repurposing. The rapid response to SARS-CoV-2 infection comprises a complex interaction of cytokine storm, endothelial dysfunction, inflammation, and pathologic coagulation. Thus, active molecules targeting multiple steps in SARS-CoV-2 lifecycle are highly wanted. Herein we explored the in silico capability of silibinin from Silybum marianum to interact with the SARS-CoV-2 main target proteins, and the in vitro effects against cytokine-induced-inflammation and dysfunction in human umbilical vein endothelial cells (HUVECs). Computational analysis revealed that silibinin forms a stable complex with SARS-CoV-2 spike protein RBD, has good negative binding affinity with Mpro, and interacts with many residues on the active site of Mpro, thus supporting its potentiality in inhibiting viral entry and replication. Moreover, HUVECs pretreatment with silibinin reduced TNF-α-induced gene expression of the proinflammatory genes IL-6 and MCP-1, as well as of PAI-1, a critical factor in coagulopathy and thrombosis, and of ET-1, a peptide involved in hemostatic vasoconstriction. Then, due to endothelium antiinflammatory and anticoagulant properties of silibinin and its capability to interact with SARS-CoV-2 main target proteins demonstrated herein, silibinin could be a strong candidate for COVID-19 management from a multitarget perspective.


Assuntos
Células Endoteliais/efeitos dos fármacos , Peptídeo Hidrolases , SARS-CoV-2 , Silibina , COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Silibina/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
13.
Chem Biodivers ; 17(8): e2000345, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32501568

RESUMO

The present study is aimed at the evaluation of the phytochemical profile and the biochemical properties of methanolic extracts obtained from different parts of Rumex algeriensis and Rumex tunetanus, two relict species limited to the North Africa. Phytochemical analyses of these extracts were performed using standard colorimetric procedures, HPLC-DAD, and HPLC-DAD-ESI/MS, and their antioxidant/free radical scavenging capability was estimated through several in vitro cell-free assays. Moreover, the anti-inflammatory potential of these extracts was demonstrated in an in vitro model of acute intestinal inflammation using differentiated Caco-2 cells. The results showed that all the extracts appeared endowed with excellent antioxidant/free radical scavenging properties. In particular, the extracts from both R. algeriensis and R. tunetanus flowers, and that from R. algeriensis stems were characterized by a remarkable SOD-like and NO-scavenging activity, as well as by the capability to protect albumin against HClO-induced degradation. Furthermore, the extracts from flowers of both Rumex species, as well as R. algeriensis stems, showed an anti-inflammatory effect in intestinal epithelial cells, as demonstrated by the inhibition of TNF-α-induced gene expression of IL-6 and IL-8. In conclusion, R. algeriensis and R. tunetanus have shown to be potential sources of bioactive products to be used in the prevention and treatment of pathologies related to oxidative stress and inflammation.


Assuntos
Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rumex/química , Anti-Inflamatórios/farmacologia , Células CACO-2 , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Metanol/química , Estresse Oxidativo/efeitos dos fármacos , Rumex/classificação , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray/métodos
14.
Phytother Res ; 33(7): 1888-1897, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31155812

RESUMO

Increased adiposity has been associated with adipose tissue low-grade inflammation leading to insulin resistance. Adipocyte differentiation inhibitors are expected to be effective in preventing obesity and related diseases. Anthocyanins (ACNs) are associated to enhanced adipocyte function and protection from metabolic stress. Herein, we evaluated the in vitro protective effects of an ACN rich extract against palmitic acid (PA)-induced hypertrophy, inflammation, and insulin resistance in 3T3-L1 adipocytes. ACN extract pretreatment reduces lipid accumulation and peroxisome proliferators-activated receptor-γ protein levels induced by PA. In addition, PA induces inflammation with activation of NF-κB pathway, whereas ACN extract pretreatment dose-dependently inhibited this pathway. Furthermore, adipocyte dysfunction associated with hypertrophy induces insulin resistance by affecting phosphatidylinositol 3-kinase-protein kinase B/Akt axis, GLUT-1, and adiponectin mRNA levels. ACN extract pretreatment reverts these effects induced by PA and moreover was able to induce insulin pathway with levels higher than insulin control cells, supporting an insulin sensitizer role for ACNs. This study demonstrates a prevention potential of ACNs against obesity comorbidities, due to their protective effects against inflammation/insulin resistance in adipocytes. In addition, these results contribute to the knowledge and strategies on the evaluation of the mechanism of action of ACNs from a food source under basal and insulin resistance conditions related to obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Resistência à Insulina , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Hipertrofia , Camundongos , Ácido Palmítico
15.
Phytomedicine ; 55: 23-30, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668434

RESUMO

BACKGROUND: Glioma is the most common primary cancer in central nervous system, especially in brain. Paclitaxel (PTX) is a microtubule stabilizing agent with anticancer potential, but its clinical application to brain tumours is limited by drug resistance, side effects, and lower brain penetration. PURPOSE: Herein we explored the in vitro effects, in glioma C6 cells, of the combination of PTX with curcumin, a natural compound with chemotherapeutic activity, in order to improve cytotoxic effects and overcome PTX limitations. RESULTS: Our data confirmed PTX antiproliferative activity that was improved by curcumin. These effects were confirmed by clonogenic assay and G0/G1 cell cycle arrest. PTX significantly promoted generation of intracellular reactive species (RS), while curcumin did not affect RS production; the combination of the two drugs resulted in a slight but significant increase in RS levels. Furthermore, we found a constitutive activation of NF-κB in C6 cell line that was inhibited by PTX and curcumin. Interestingly, combination of the drugs totally inhibited NF-κB nuclear translocation and reduced IκB phosphorylation. Our results also supported the involvement of p53-p21 axis in the anticancer effects of curcumin and PTX. The combination of the two drugs further increased p53 and p21 levels enhancing the antiproliferative effects. Furthermore, PTX plus curcumin most impressively activated caspase-3, effector of apoptosis pathways, and reduced the expression of the anti-apoptotic protein Bcl-2. CONCLUSION: In conclusion, our findings demonstrated that combination of PTX and curcumin exerts a potentiated anti-glioma efficacy in vitro that may help in reducing dosage and/or minimizing side effects of cytotoxic therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Curcumina/farmacologia , Glioma/patologia , Humanos , NF-kappa B/metabolismo , Paclitaxel/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2 , Ratos , Transdução de Sinais/efeitos dos fármacos
16.
Phytochemistry ; 152: 162-173, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29775867

RESUMO

Hypericum is one out of the nine genera belonging to the botanical family Clusiaceae Lindl (syn. Hypericaceae Juss.; APG III, 2009). The genus contains 484 species spread worldwide, one of which, Hypericum perforatum, is largely used in folk medicine. The aim of this study was to evaluate the chemical composition, along with the antioxidant and phototoxic activity, of 11 Hypericum species grown in Sicily (H. perforatum L., H. aegypticum L., H. androsaemum L., H. calycinum L., H. hircinum L., H. hirsutum L., H. montanum L., H. patulum Thunb., H. perfoliatum L., H. pubescens Boiss., H. tetrapterum Fr.). Samples of flowering tops collected from these Hypericum species were extracted and analysed by high performance liquid chromatography with diode-array detection and mass spectrometry (HPLC-DAD-MS) to determine their content of main polyphenols, acylphloroglucinols, and naphthodianthrones. The extracts were also subjected to a photocytotoxic assay using murine fibroblast (NIH/3T3), and their antioxidant activity evaluated by means of Folin-Ciocalteau, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and oxygen radical antioxidant capacity assays. Phytochemical analysis allowed us to identify and quantify 20 metabolites, each of them possessing a well-known biological activity. Furthermore, all examined species showed a good cytotoxic and antioxidant/radical scavenging activity. These results indicate that in addition to the well-known H. perforatum, at least other three species (H. tetrapterum, H. pubescens, and H. montanum) represent potential sources of biologically active compounds, and at least other two species (H. perfoliatum and H. tetrapterum), due to their phototoxicity are candidates for application in photodynamic therapy.


Assuntos
Antioxidantes/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Fibroblastos/efeitos dos fármacos , Hypericum/química , Compostos Fitoquímicos/farmacologia , Picratos/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Dermatite Fototóxica , Flores/química , Espectrometria de Massas , Camundongos , Células NIH 3T3 , Fotoquimioterapia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Especificidade da Espécie
17.
Biofactors ; 43(1): 54-62, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27412371

RESUMO

Hyperglycemia contributes to dysregulate endothelial function associated with diabetes, leading to initiation and propagation of vascular complications and dysfunction. Caffeic acid (CA), a dietary hydroxycinnamic acid abundant in coffee, has been reported to exert antidiabetic effects in rat models. Herein, we investigated the molecular effects of physiological concentrations of CA (10 nM) against endothelial dysfunction induced by high glucose (HG) in human endothelial cells (HUVECs). HUVECs were exposed to HG 25 mM, to mimic diabetic condition, in presence of CA. Intracellular redox status (reduced glutathione, superoxide dismutase (SOD) and total antioxidant activity levels), and NF-κB pathway were examined. We also evaluated the involvement of NF-E2-related factor 2 (Nrf2)/electrophile responsive element (EpRE) pathway. Our data show that CA inhibits HG-induced nuclear translocation of NF-κB and the downstream expression of endothelial adhesion molecule 1 and restores antioxidant levels by upregulating Nrf2/EpRE pathway. Our data suggest that CA can suppress several aspects of HG-induced endothelial dysfunction through the modulation of intracellular redox status controlled by the transcription factor Nrf2. These findings highlight that low physiological concentration of CA achievable specifically upon food consumption are able to prevent endothelial dysfunction associated with inflammation and oxidative stress induced by high concentration of glucose. © 2016 BioFactors, 43(1):54-62, 2017.


Assuntos
Ácidos Cafeicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Transcrição RelA/metabolismo , Adesão Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Selectina E/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Glutationa/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
18.
Pharmacogn Mag ; 12(47): 203-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27601851

RESUMO

BACKGROUND: Thymelaea microphylla Coss. et Dur. (Thymelaeaceae) (TM) is a rare medicinal plant endemic to Algeria. Leaves decoction is used in folk medicine for anticancer, anti-inflammatory, and antidiabetic properties. OBJECTIVE: Herein, the antioxidant and anti-inflammatory properties of different extracts from leaves and flowers of Algerian TM were evaluated. MATERIALS AND METHODS: The study was carried out by in vitro cell-free assays (antioxidant/radical properties), ex vivo experiments (inhibition of prostaglandin E2 and thromboxane B2 release in human whole blood) and in vitro experiments on cell systems (cytotoxicity on peripheral blood mononuclear cells, and protective effects on human vein endothelial cells exposed to TNF-α). RESULTS: The acetone TM extract showed significant antioxidant properties and excellent anti-inflammatory and cyclooxygenase-inhibitory activity, together with lack of toxicity on normal human blood cells; furthermore, it was able to protect endothelial cells against dysfunction induced by TNF-α, as shown by decrease in cell death, e-selectin expression and leukocyte adhesion. CONCLUSION: On these bases, TM leaves and flowers appear to be a good source of bioactive compounds with significant antioxidant and antiinflammatory capability, and potentially effective in prevention and treatment of pathological conditions related to oxidative stress and inflammation, such as endothelial dysfunction. SUMMARY: Thymelaea microphylla leaves and flowers are a good source of bioactive compounds with significant antioxidant/free radical scavenger and antiinflammatory activity.The acetone extract from leaves and flowers of Algerian Thymelaea microphylla possesses excellent cyclooxygenase-inhibitory activity.This extract is able to protect against endothelial dysfunction, an early event in development of atherosclerosis and vascular diseases. Abbreviations used: TM: Thymelaea microphylla; BCB: Beta-carotene bleaching; AcE: Acetone extract; PGE2: Prostaglandin E2; TxB2: Thromboxane B2; FL: Fluorescein; Cat: Catechin; DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: 2,2'-azinobis-(3-ethyl-benzothiazolin-6-sulfonic acid)+; Que: Quercetin; ORAC: Oxygen radical absorbance capacity; AAPH: 2,2'-azobis (2-methylpropionamidine)dihydrochloride; PMS/NADH: Phenazine methosulfate/nicotinamide adenine dinucleotide; HUVECs: Human umbilical vein endothelial cells.

19.
Mol Med Rep ; 14(2): 1397-403, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27314273

RESUMO

Colorectal cancer is the fourth most common type of cancer worldwide, and adenocarcinoma cells that form the majority of colorectal tumors are markedly resistant to antineoplastic agents. Epidemiological studies have demonstrated that consumption of fruits and vegetables that are rich in polyphenols, is linked to reduced risk of colorectal cancer. In the present study, the effect of a standardized anthocyanin (ACN)­rich extract on proliferation, apoptosis and cell cycle in the Caco-2 human colorectal cancer cell line was evaluated by trypan blue and clonogenic assays and western blot analysis of cleaved caspase­3 and p21Waf/Cif1. The results of the current study demonstrated that the ACN extract markedly decreased Caco­2 cell proliferation, induced apoptosis by activating caspase­3 cleavage, and upregulated cyclin­dependent kinase inhibitor 1 (p21Waf/Cif1) expression in a dose dependent manner. Furthermore, ACN extract was able to produce a dose­dependent increase of intracellular reactive oxygen species (ROS) in Caco­2 cells, together with a light increase of the cell total antioxidant status. In conclusion, the present study demonstrated that a standardized berry anthocyanin rich extract inhibited proliferation of Caco­2 cells by promoting ROS accumulation, inducing caspase­3 activation, and upregulating the expression of p21Waf/Cif1.


Assuntos
Antocianinas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Caspase 3/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Frutas/química , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
20.
Chem Biodivers ; 12(7): 1075-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26172328

RESUMO

To identify the best biotypes, an extensive survey of Sicilian wild rosemary was carried out by collecting 57 samples from various sites, followed by taxonomic characterization from an agronomic perspective. All the biotypes collected were classified as Rosmarinus officinalis L. A cluster analysis based on the morphological characteristics of the plants allowed the division of the biotypes into seven main groups, although the characteristics examined were found to be highly similar and not area-dependent. Moreover, all samples were analyzed for their phytochemical content, applying an extraction protocol to obtain the nonvolatile components and hydrodistillation to collect the essential oils for the volatile components. The extracts were characterized by LC-UV-DAD/ESI-MS, and the essential oils by GC-FID and GC/MS analyses. In the nonvolatile fractions, 18 components were identified, namely, 13 flavones, two organic acids, and three diterpenes. In the volatile fractions, a total of 82 components were found, with as predominant components α-pinene and camphene among the monoterpene hydrocarbons and 1,8-cineole, camphor, borneol, and verbenone among the oxygenated monoterpenes. Cluster analyses were carried out on both phytochemical profiles, allowing the separation of the rosemary samples into different chemical groups. Finally, the total phenol content and the antioxidant activity of the essential oils and extracts were determined with the Folin-Ciocalteu (FC) colorimetric assay, the UV radiation-induced peroxidation in liposomal membranes (UV-IP test), and the scavenging activity of the superoxide radical (O$\rm{{_{2}^{{^\cdot} -}}}$). The present study confirmed that the essential oils and organic extracts of the Sicilian rosemary samples analyzed showed a considerable antioxidant/free radical-scavenging activity.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Ledum/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/química , Antioxidantes/isolamento & purificação , Estrutura Molecular , Óleos Voláteis/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA