RESUMO
Orthostatic hypotension is a cardinal feature of multiple-system atrophy. The upright posture provokes syncopal episodes that prevent patients from standing and walking for more than brief periods. We implanted a system to restore regulation of blood pressure and enable a patient with multiple-system atrophy to stand and walk after having lost these abilities because of orthostatic hypotension. This system involved epidural electrical stimulation delivered over the thoracic spinal cord with accelerometers that detected changes in body position. (Funded by the Defitech Foundation.).
Assuntos
Terapia por Estimulação Elétrica , Hipotensão Ortostática , Atrofia de Múltiplos Sistemas , Acelerometria , Atrofia , Pressão Sanguínea/fisiologia , Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados , Espaço Epidural , Humanos , Hipotensão Ortostática/diagnóstico , Hipotensão Ortostática/etiologia , Hipotensão Ortostática/terapia , Atrofia de Múltiplos Sistemas/terapia , Postura/fisiologia , Vértebras TorácicasRESUMO
STUDY DESIGN: Experimental study. OBJECTIVES: Compromised cerebrovascular function likely contributes to elevated neurological risk in spinal cord injury (SCI). Passive heating offers many cardiovascular and neurological health benefits; therefore, we aimed to determine the effects of an acute bout of heating on cerebrovascular function in chronic SCI. METHODS: Persons with cervical SCI (n = 15) and uninjured controls (CON; n = 15) completed 60 min of lower limb hot water immersion (40 °C). Assessments of middle cerebral (MCA) and posterior cerebral artery (PCA) velocities, pulsatilities, and neurovascular coupling (NVC) were performed using transcranial Doppler ultrasound. Duplex ultrasonography was used to index cerebral blood flow via the internal carotid artery (ICA), and carotid-femoral pulse-wave velocity (PWV) was measured using tonometry. The NVC response was quantified as the peak hyperemic value during 30-s cycles of visual stimulation. RESULTS: Mean arterial pressure changed differentially with heating [mean (standard deviation); SCI: +6(14) mmHg, CON: -8(12) mmHg; P = 0.01]. There were no differences in any intracranial artery measures (all P > 0.05), except for small (~10%) increases in MCA conductance in CON after heating vs. SCI (interaction P = 0.006). Resting ICA flow was greater in SCI vs. CON (P = 0.03) but did not change with heating in either group (interaction P = 0.34). There were also no between-group differences in the NVC response (ΔPCA conductance) pre- [SCI: 29(19)% vs. CON: 30(9)%] or post-heating [SCI 30(9)% vs. 25(9)%; interaction P = 0.22]. CONCLUSIONS: Mild acute heating does not impair or improve cerebrovascular function in SCI or CON. Thus, further study of the effects of chronic heating interventions are warranted.
Assuntos
Circulação Cerebrovascular/fisiologia , Vértebras Cervicais/diagnóstico por imagem , Hipertermia Induzida/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Vértebras Cervicais/lesões , Feminino , Humanos , Hipertermia Induzida/tendências , Masculino , Pessoa de Meia-Idade , Traumatismos da Medula Espinal/terapiaRESUMO
Cardiovascular diseases (CVD) are highly prevalent in spinal cord injury (SCI), and peripheral vascular dysfunction might be a contributing factor. Recent evidence demonstrates that exposure to heat stress can improve vascular function and reduce the risk of CVD in uninjured populations. We therefore aimed to examine the extent of vascular dysfunction in SCI and the acute effects of passive heating. Fifteen participants with cervical SCI and 15 uninjured control (CON) participants underwent ultrasound assessments of vascular function and venous blood sampling for biomarkers of endothelial activation (i.e., CD62e+) and apoptosis (i.e., CD31+/42b-) before and after a 60-min exposure to lower limb hot water immersion (40°C). In SCI, macrovascular endothelial function was reduced in the brachial artery [SCI: 4.8 (3.2)% vs. CON: 7.6 (3.4)%, P = 0.04] but not the femoral artery [SCI: 3.7 (2.6)% vs. CON: 4.0 (2.1)%, P = 0.70]. Microvascular function, via reactive hyperemia, was ~40% lower in SCI versus CON in both the femoral and brachial arteries ( P < 0.01). Circulating concentrations of CD62e+ were elevated in SCI versus CON [SCI: 152 (106) microparticles/µl vs. CON: 58 (24) microparticles/µl, P < 0.05]. In response to heating, macrovascular and microvascular function remained unchanged, whereas increases (+83%) and decreases (-93%) in antegrade and retrograde shear rates, respectively, were associated with heat-induced reductions of CD62e+ concentrations in SCI to levels similar to CON ( P = 0.05). These data highlight the potential of acute heating to provide a safe and practical strategy to improve vascular function in SCI. The chronic effects of controlled heating warrant long-term testing. NEW & NOTEWORTHY Individuals with cervical level spinal cord injury exhibit selectively lower flow-mediated dilation in the brachial but not femoral artery, whereas peak reactive hyperemia was lower in both arteries compared with uninjured controls. After 60 min of lower limb hot water immersion, femoral artery blood flow and shear patterns were acutely improved in both groups. Elevated biomarkers of endothelial activation in the spinal cord injury group decreased with heating, but these biomarkers remained unchanged in controls.
Assuntos
Selectina E/sangue , Endotélio Vascular/fisiopatologia , Resposta ao Choque Térmico , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Artérias/diagnóstico por imagem , Biomarcadores/sangue , Vértebras Cervicais/lesões , Endotélio Vascular/diagnóstico por imagem , Feminino , Hemorreologia , Humanos , Hipertermia Induzida , Masculino , Microvasos/diagnóstico por imagem , Pessoa de Meia-IdadeRESUMO
OBJECTIVE: To use a combination of electrophysiological techniques to determine the extent of preserved muscle activity below the clinically-defined level of motor-complete spinal cord injury. METHODS: Transcranial magnetic stimulation and vestibular-evoked myogenic potentials were used to investigate whether there was any preserved muscle activity in trunk, hip and leg muscles of 16 individuals with motor-complete spinal cord injury (C4-T12) and 16 able-bodied matched controls. RESULTS: Most individuals (14/16) with motor-complete spinal cord injury were found to have transcranial magnetic stimulation evoked, and/or voluntary evoked muscle activity in muscles innervated below the clinically classified lesion level. In most cases voluntary muscle activation was accompanied by a present transcranial magnetic stimulation response. Furthermore, motor-evoked potentials to transcranial magnetic stimulation could be observed in muscles that could not be voluntarily activated. Vestibular-evoked myogenic potentials responses were also observed in a small number of subjects, indicating the potential preservation of other descending pathways. CONCLUSION: These results highlight the importance of using multiple electrophysiological techniques to assist in determining the potential preservation of muscle activity below the clinically-defined level of injury in individuals with a motor-complete spinal cord injury. These techniques may provide clinicians with more accurate information about the state of various motor pathways, and could offer a method to more accurately target rehabilitation.