Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083137

RESUMO

The analysis of maternal factors that impact the normal development of the fetal thalamus is an emerging field of research and requires the retrospective measurement of fetal thalamus diameter (FTD). Unfortunately, FTD is not measured in routine 2D ultrasound (2D-US) screenings of fetuses. Manual measurement of FTD is a laborious, difficult, and error-prone process because the thalamus lacks well-defined boundaries in 2D-US images of the fetal brain as it has a similar echogenicity to the surrounding brain tissue. Traditional methods based on statistical shape models (SSMs) perform poorly in measuring FTD due to the noisy textures and fuzzy edges of the fetal thalamus in 2D-US images of the fetal brain. To overcome these difficulties, we propose a deep learning-based automatic FTD measurement algorithm, FTDNet. FTDNet measures FTD by learning to directly detect the measurement landmarks through supervised learning. The algorithm first detects the region of the brain that contains the thalamus structure, and then focuses on processing that region for FTD landmark detection. Our FTD dataset, developed through a consensus between two ultrasonographers, contains 1,111 pairs of landmark coordinates for measuring FTD and verified bounding boxes surrounding the fetal thalamus. To assess FTDNet's measurement consistency compared to the ground truth, we used the intraclass correlation coefficient (ICC). FTDNet achieved an ICC score of 0.734, significantly outperforming the prior SSM method and other baseline comparison methods. Our findings are an important step forward in understanding the maternal factors which influence fetal brain development.Clinical relevance- This work proposes an end-to-end thalamus detection and measurement algorithm for measuring fetal thalamus diameter. Our work represents a significant step in the research of how maternal factors can impact fetal thalamus development. The development of an automatic and accurate method for measuring FTD through deep learning has the potential to greatly advance this field of study.


Assuntos
Aprendizado Profundo , Demência Frontotemporal , Humanos , Estudos Retrospectivos , Algoritmos , Feto , Tálamo/diagnóstico por imagem
2.
IEEE J Biomed Health Inform ; 21(4): 1069-1078, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27333614

RESUMO

We derived an automated algorithm for accurately measuring the thalamic diameter from 2-D fetal ultrasound (US) brain images. The algorithm overcomes the inherent limitations of the US image modality: nonuniform density; missing boundaries; and strong speckle noise. We introduced a "guitar" structure that represents the negative space surrounding the thalamic regions. The guitar acts as a landmark for deriving the widest points of the thalamus even when its boundaries are not identifiable. We augmented a generalized level-set framework with a shape prior and constraints derived from statistical shape models of the guitars; this framework was used to segment US images and measure the thalamic diameter. Our segmentation method achieved a higher mean Dice similarity coefficient, Hausdorff distance, specificity, and reduced contour leakage when compared to other well-established methods. The automatic thalamic diameter measurement had an interobserver variability of -0.56 ± 2.29 mm compared to manual measurement by an expert sonographer. Our method was capable of automatically estimating the thalamic diameter, with the measurement accuracy on par with clinical assessment. Our method can be used as part of computer-assisted screening tools that automatically measure the biometrics of the fetal thalamus; these biometrics are linked to neurodevelopmental outcomes.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Tálamo/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Algoritmos , Feminino , Humanos , Modelos Estatísticos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA