Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Appl Biochem Biotechnol ; 196(2): 729-773, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37184725

RESUMO

Aloe barbadensis Miller (ABM) is a traditional medicinal plant all over the world. Numerous studies were conducted to exhibit its medicinal properties and most of them were concentrated on its metabolites against human pathogens. The current research work evaluates the attributes of different polar-based extracts (ethanol, methanol, ethyl acetate, acetone, hexane, and petroleum ether) of dried Aloe barbadensis leaf (ABL) to investigate its phytochemical constituents, antioxidant potential (DPPH, ABTS), phenolic, tannin, flavonoid contents, identification of bioactive compounds, and functional groups by gas chromatography-mass spectrometry (GC-MS) and fourier transform infrared spectroscopy (FT-IR) respectively, and comparing antibacterial efficacy against human pathogens, aquatic bacterial pathogens, and zoonotic bacteria associated with fish and human. The present results showed that the methanolic extract of ABL showed higher antioxidant activity (DPPH-59.73 ± 2.01%; ABTS-74.1 ± 1.29%), total phenolic (10.660 ± 1.242 mg GAE/g), tannin (7.158 ± 0.668 mg TAE/g), and flavonoid content (49.545 ± 1.928 µg QE/g) than that of other solvent extracts. Non-polar solvents hexane and petroleum ether exhibited lesser activity among the extracts. In the case of antibacterial activity, higher inhibition zone was recorded in methanol extract of ABL (25.00 ± 0.70 mm) against Aeromonas salmonicida. Variations in antibacterial activity were observed depending on solvents and extracts. In the current study, polar solvents revealed higher antibacterial activity when compared to the non-polar and the mid-polar solvents. Diverse crucial bioactive compounds were detected in GC-MS analysis. The vital compounds were hexadecanoic acid (30.69%) and 2-pentanone, 4-hydroxy-4-methyl (23.77%) which are responsible for higher antioxidant and antibacterial activity. Similar functional groups were identified in all the solvent extracts of ABL with slight variations in the FT-IR analysis. Polar-based solvent extraction influenced the elution of phytocompounds more than that of the other solvents used in this study. The obtained results suggested that the ABM could be an excellent source for antioxidant and antibacterial activities and can also serve as a potential source of effective bioactive compounds to combat human as well as aquatic pathogens.


Assuntos
Alcanos , Aloe , Antioxidantes , Benzotiazóis , Ácidos Sulfônicos , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Taninos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Gasosa-Espectrometria de Massas , Hexanos , Metanol/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Solventes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Flavonoides/farmacologia
2.
Fish Physiol Biochem ; 49(6): 1435-1459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996691

RESUMO

Aquatic bacterial pathogens can cause severe economic loss in aquaculture industry. An opportunistic pathogen, Aeromonas hydrophila is responsible for Motile Aeromonas Septicemia, leading to high mortality rates in fish. The present study was focused on the efficacy of Aloe barbadensis replacing fishmeal diets on hematological, serum biochemical, antioxidant, histopathological parameters, and disease resistance against A. hydrophila infection in Labeo rohita. Isonitrogenous fishmeal replaced diets (FMR) were prepared with varying levels of A. barbadensis at D1 (0%) (control), D2 (25%), D3 (50%), D4 (75%) and D5 (100%) then fed to L. rohita. After 60 days of post-feeding, the experimental fish were challenged with A. hydrophila. Blood and organs were collected and examined at 1- and 15-days post infection (dpi). The results demonstrated that on 1 dpi, white blood cells (WBC), total protein, cholesterol and low-density lipoprotein (LDL) levels were significantly increased in D3 diet fed groups. The D2 and D3 diet fed group showed decreasing trends of serum glutamic pyruvic transaminase (SGPT) and antioxidant enzymes activity on 15 dpi. The histopathological architecture results clearly illustrated that the D3 diet fed group had given a higher protective effect by reducing the pathological changes associated with A. hydrophila infection in liver, intestine and muscle. Higher percentage of survival rate was also observed in D3 diet fed group. Therefore, the present study suggested that the dietary administration of A. barbadensis up to 50% fishmeal replacement (D3 diet) can elicit earlier antioxidant activity, innate immune response and improve survival rate in L. rohita against A. hydrophila infection.


Assuntos
Aloe , Cyprinidae , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Resiliência Psicológica , Animais , Suplementos Nutricionais/análise , Antioxidantes/metabolismo , Aeromonas hydrophila , Dieta/veterinária , Cyprinidae/metabolismo , Resistência à Doença , Água Doce , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária
3.
Mar Drugs ; 21(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233472

RESUMO

Exploration of seaweeds to unravel their bioactive metabolites from the perspective of wider applications gained substantial importance. The present study was performed to investigate the total phenolic, flavonoid, tannin content, antioxidant activity and antibacterial potential of various solvent extracts of green seaweed Caulerpa racemosa. The methanolic extract showed higher phenolic (11.99 ± 0.48 mg gallic acid equivalents/g), tannin (18.59 ± 0.54 mg tannic acid equivalents/g) and flavonoid (33.17 ± 0.76 mg quercetin equivalents/g) content than other extracts. Antioxidant activity was determined by using 2,2-diphenylpicrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay with different concentrations of C. racemosa extracts. The methanolic extract showed higher scavenging potential in both the DPPH and ABTS activity with the inhibition value of 54.21 ± 1.39% and 76.62 ± 1.08%, respectively. Bioactive profiling was also identified by using Gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared (FT-IR) techniques. These studies revealed the presence of valuable bioactive compounds in C. racemosa extracts and these compounds might be responsible for antimicrobial, antioxidant, anticancer and anti-mutagenic properties. Major compounds identified in GC-MS were 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, 3-hexadecene and Phthalic acid. In terms of antibacterial activity, C. racemosa has promising antibacterial potential against aquatic pathogens Aeromonas hydrophila, Aeromonas veronii and Aeromonas salmonicida. Further evaluation studies focusing aquatic related aspects would reveal the novel bioproperties and applications of C. racemosa.


Assuntos
Caulerpa , Alga Marinha , Antioxidantes/química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Flavonoides/análise , Fenóis/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Taninos
4.
Biol Trace Elem Res ; 201(2): 904-925, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35199287

RESUMO

Green evolutionary products such as biologically fabricated nanoparticles (NPs) pose a hazard to aquatic creatures. Herein, biogenic silver nanoparticles (AgNPs) were synthesized by the reaction between ionic silver (AgNO3) and aqueous onion peel extract (Allium cepa L). The synthesized biogenic AgNPs were characterized with UV-Visible spectrophotometer, XRD, FT-IR, and TEM with EDS analysis; then, their toxicity was assessed on common carp fish (Cyprinus carpio) using biomarkers of haematological alterations, oxidative stress, histological changes, differential gene expression patterns, and bioaccumulation. The 96 h lethal toxicity was analysed with various concentrations (2, 4, 6, 8, and 10 mg/l) of biogenic AgNPs. Based on 96 h LC50, sublethal concentrations (1/15th, 1/10th, and 1/5th) were given to C. carpio for 28 days. At the end of experiment, the bioaccumulations of Ag content were accumulated mainly in the gills, followed by the liver and muscle. At an interval of 7 days, the haematological alterations showed significance (p < 0.05) and elevation of antioxidant defence mechanism reveals the toxicity of biogenic synthesized AgNPs. Adverse effects on oxidative stress were probably related to the histopathological damage of its vital organs like gill, liver, and muscle. Finally, the fish treated with biogenic synthesized AgNPs were significantly (p < 0.05) downregulates the oxidative stress genes such as Cu-Zn SOD, CAT, GPx1a, GST-α, CYP1A, and Nrf-2 expression patterns. The present study provides evidence of biogenic synthesized AgNPs influence on the aquatic life through induction of oxidative stress.


Assuntos
Carpas , Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , Cebolas/genética , Cebolas/metabolismo , Carpas/genética , Carpas/metabolismo , Prata/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Oxidativo , Água Doce , Brânquias/metabolismo , Poluentes Químicos da Água/metabolismo
5.
Environ Sci Pollut Res Int ; 28(26): 33927-33941, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33410001

RESUMO

Nanotechnology tends to be a swiftly growing field of research that actively influences and inhibits the growth of bacteria/cancer. Noble metal nanoparticles (NPs) such as silver, copper, and gold have been used to damage bacterial and cancer growth over recent years; however, the toxicity of higher NPs concentrations remains a major issue. The copper oxide nanoparticles (CuONPs) were therefore fabricated using a simple green chemistry approach. Biofabricated CuONPs were characterized using UV-visible, FE-SEM with EDS, HR-TEM, FT-IR, XRD, Raman spectroscopy, and XPS analysis. Formations of CuONPs have been observed by UV-visible absorbance peak at 360.74 nm. The surface morphology of the CuONPs showed the spherical structure and size (~ 68 nm). The EDS spectrum of CuONPs has proved to be the key signals of copper (Cu) and oxygen (O) components. FT-IR analysis, to validate the important functional biomolecules (O-H, C=C, C-H, C-O) are responsible for reduction and stabilization of CuONPs. The monoclinic end-centered crystalline structures of CuONPs were confirmed with XRD planes. The electrochemical oxygen states of the CuONPs have been studied using spectroscopy of the Raman and X-ray photoelectron. After successful preparation, CuONPs examined their antibacterial, anticancer, and photocatalytic activities. Green-fabricated CuONPs were promising antibacterial candidate against human pathogenic gram-negative bacteria Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Klebsiella pneumoniae, Aeromonas hydrophila, and Pseudomonas aeruginosa. CuONPs were demonstrated the excellent anticancer activity against A549 human lung adenocarcinoma cell line. Furthermore, CuONPs exhibited photocatalytic degradation of azo dyes such as eosin yellow (EY), rhodamine 123 (Rh 123), and methylene blue (MB). Biofabricated CuONPs may therefore be an important biomedical research for the aid of bacterial/cancer diseases and photocatalytic degradation of azo dyes.


Assuntos
Nanopartículas Metálicas , Ocimum , Antibacterianos/farmacologia , Cobre , Química Verde , Humanos , Testes de Sensibilidade Microbiana , Óxidos , Extratos Vegetais , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Trop Anim Health Prod ; 53(1): 119, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33442775

RESUMO

The present study investigated the effects of Aquamin® mineral mixture (AQMM) and Agrimin® mineral mixture (AGMM) supplemented diets on growth and chemical composition of juvenile freshwater prawn Macrobrachium malcolmsonii (H. Milne-Edwards, 1844). Experimental diets containing 6 different AQMM levels (Trial 1: 0, 0.5, 1.0, 1.5, 2.0, and 2.5%) and 6 different AGMM levels (Trial 2: 0, 0.5, 1.0, 1.5, 2.0, and 2.5%) were formulated to feed juvenile prawn [initial body weight of 0.82 ± 0.05 g (Trial 1) and 1.24 ± 0.03 g (Trial 2)] for 60 days. Prawn fed diets containing 1.0% of AQMM and AGMM showed significantly increased (P < 0.05) survival rate, weight gain, specific growth rate, protein efficiency ratio, edible flesh weight, and proximate composition (moisture, crude protein, crude fat, and ash), while feed intake and feed conversion ratio were significantly decreased (P < 0.05). Whereas, 1.5-2.5% of AQMM- and AGMM-supplemented diets fed prawn showed a reverse trend when comparing other groups. Moreover, the minerals (macro elements: Ca, P, Mg, Na, and K; trace elements: Cu, Zn, and Fe) were significantly increased (P < 0.05) in the carcass of prawn when fed with 2.5% AQMM- and AGMM-supplemented diets. The present results suggest that the optimal dietary supplementation of AQMM and AGMM at a concentration of up to 1.06 and 1.02%, respectively (based on polynomial regression analysis), improved growth and enhanced the crude protein level of juvenile prawn.


Assuntos
Palaemonidae , Ração Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Água Doce , Minerais
9.
Am J Physiol Renal Physiol ; 318(6): F1357-F1368, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32308021

RESUMO

Selective electrical stimulation of the pudendal nerve exhibits promise as a potential therapy for treating overactive bladder (OAB) across species (rats, cats, and humans). More recently, pelvic nerve (PelN) stimulation was demonstrated to improve cystometric bladder capacity in a PGE2 rat model of OAB. However, PelN stimulation in humans or in an animal model that is more closely related to humans has not been explored. Therefore, our objective was to quantify the effects of PGE2 and PelN stimulation in the cat. Acute cystometry experiments were conducted in 14 α-chloralose-anesthetized adult, neurologically intact female cats. Intravesical PGE2 decreased bladder capacity, residual volume, threshold contraction pressure, and mean contraction pressure. PelN stimulation reversed the PGE2-induced decrease in bladder capacity and increased evoked external urethral sphincter electromyographic activity without influencing voiding efficiency. The increases in bladder capacity generated by PelN stimulation were similar in the rat and cat, but the stimulation parameters to achieve this effect differed (threshold amplitude at 10 Hz in the rat vs. twice threshold amplitude at 1 Hz in the cat). These results highlight the potential of PGE2 as a model of OAB and provide further evidence that PelN stimulation is a promising approach for the treatment of OAB symptoms.


Assuntos
Dinoprostona , Terapia por Estimulação Elétrica , Contração Muscular , Músculo Liso/inervação , Pelve/inervação , Bexiga Urinária Hiperativa/terapia , Bexiga Urinária/inervação , Urodinâmica , Animais , Gatos , Modelos Animais de Doenças , Feminino , Pressão , Bexiga Urinária Hiperativa/induzido quimicamente , Bexiga Urinária Hiperativa/fisiopatologia
10.
Nat Biotechnol ; 37(12): 1446-1451, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712773

RESUMO

Vagus nerve stimulation can ameliorate autoimmune diseases such as rheumatoid arthritis by modulation of the immune system. Its efficacy for the treatment of type 1 diabetes has not been explored, in part because the nerves projecting to the pancreatic lymph nodes (pLNs) in mice are unmapped. Here, we map the nerve projecting to the pancreas and pLNs in mice and use a minimally invasive surgical procedure to implant micro-cuff electrodes onto the nerve. Pancreatic nerve electrical stimulation (PNES) resulted in ß-adrenergic receptor-mediated-accumulation of B and T cells in pLNs and reduced production of pro-inflammatory cytokines following lipopolysaccharide stimulation. Autoreactive T cells showed reduced proliferation in pLNs of mice receiving PNES as compared to sham controls. In a spontaneous mouse model of autoimmune diabetes, PNES inhibited disease progression in diabetic mice.


Assuntos
Diabetes Mellitus Tipo 1 , Terapia por Estimulação Elétrica , Pâncreas , Animais , Linfócitos B/imunologia , Glicemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Feminino , Insulina/metabolismo , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Pâncreas/imunologia , Pâncreas/inervação , Pâncreas/metabolismo , Linfócitos T/imunologia
11.
Brain Behav Immun ; 80: 238-246, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30885844

RESUMO

The autonomic nervous system innervates all lymphoid tissues including the spleen therefore providing a link between the central nervous system and the immune system. The only known mechanism of neural inhibition of inflammation in the spleen relies on the production of norepinephrine by splenic catecholaminergic fibers which binds to ß2-adrenergic receptors (ß 2-ARs) of CD4+ T cells. These CD4+ T cells trigger the release of acetylcholine that inhibits the secretion of inflammatory cytokines by macrophages through α7 nicotinic acetylcholine receptor (α7nAchRs) signaling. While the vagal anti-inflammatory pathway has been extensively studied in rodents, it remains to be determined whether it coexists with other neural pathways. Here, we have found that three nerve branches project to the spleen in mice. While two of these nerves are associated with an artery and contain catecholaminergic fibers, the third is located at the apex of the spleen and contain both catecholaminergic and cholinergic fibers. We found that electrical stimulation of the apical nerve, but not the arterial nerves, inhibited inflammation independently of lymphocytes. In striking contrast to the anti-inflammatory pathway mechanism described so far, we also found that the inhibition of inflammation by apical nerve electrical stimulation relied on signaling by both ß 2-ARs and α7nAchRs in myeloid cells, with these two signaling pathways acting in parallel. Most importantly, apical splenic nerve electrical stimulation mitigated clinical symptoms in a mouse model of rheumatoid arthritis further providing the proof-of-concept that such an approach could be beneficial in patients with Immune-mediated inflammatory diseases.


Assuntos
Células Mieloides/imunologia , Receptores Adrenérgicos/imunologia , Receptores Nicotínicos/imunologia , Baço/imunologia , Baço/inervação , Acetilcolina/metabolismo , Animais , Estimulação Elétrica , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Norepinefrina/metabolismo , Baço/fisiopatologia , Fator de Necrose Tumoral alfa/imunologia , Nervo Vago/imunologia , Estimulação do Nervo Vago
12.
Am J Physiol Renal Physiol ; 314(4): F543-F550, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141938

RESUMO

Pudendal nerve stimulation is a promising treatment approach for lower urinary tract dysfunction, including symptoms of overactive bladder. Despite some promising clinical studies, there remain many unknowns as to how best to stimulate the pudendal nerve to maximize therapeutic efficacy. We quantified changes in bladder capacity and voiding efficiency during single-fill cystometry in response to electrical stimulation of the sensory branch of the pudendal nerve in urethane-anesthetized female Wistar rats. Increases in bladder capacity were dependent on both stimulation amplitude and rate. Stimulation that produced increases in bladder capacity also led to reductions in voiding efficiency. Also, there was a stimulation carryover effect, and increases in bladder capacity persisted during several nonstimulated trials following stimulated trials. Intravesically administered PGE2 reduced bladder capacity, producing a model of overactive bladder (OAB), and sensory pudendal nerve stimulation again increased bladder capacity but also reduced voiding efficiency. This study serves as a basis for future studies that seek to maximize the therapeutic efficacy of sensory pudendal nerve stimulation for the symptoms of OAB.


Assuntos
Terapia por Estimulação Elétrica/métodos , Nervo Pudendo/fisiopatologia , Bexiga Urinária Hiperativa/terapia , Bexiga Urinária/inervação , Urodinâmica , Animais , Dinoprostona , Modelos Animais de Doenças , Feminino , Ratos Wistar , Bexiga Urinária Hiperativa/induzido quimicamente , Bexiga Urinária Hiperativa/fisiopatologia
13.
Am J Physiol Renal Physiol ; 313(3): F657-F665, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615244

RESUMO

Overactive bladder (OAB) syndrome is a highly prevalent condition that may lead to medical complications and decreased quality of life. Emerging therapies focusing on selective electrical stimulation of peripheral nerves associated with lower urinary tract function may provide improved efficacy and reduced side effects compared with sacral neuromodulation for the treatment of OAB symptoms. Prior studies investigating the effects of pelvic nerve (PelN) stimulation on lower urinary tract function were focused on promoting bladder contractions, and it is unclear whether selective stimulation of the PelN would be beneficial for the treatment of OAB. Therefore our motivation was to test the hypothesis that PelN stimulation would increase bladder capacity in the prostaglandin E2 (PGE2) rat model of OAB. Cystometry experiments were conducted in 17 urethane-anesthetized female Sprague-Dawley rats. The effects of intravesical PGE2 vs. vehicle and PelN stimulation after intravesical PGE2 on cystometric parameters were quantified. Intravesical infusion of PGE2 resulted in decreased bladder capacity and increased voiding efficiency without a change in bladder contraction area under the curve, maximum contraction pressure, or contraction duration. Bladder capacity was also significantly decreased compared with vehicle (1% ethanol in saline) confirming that the change in bladder capacity was mediated by PGE2 PelN stimulation reversed the PGE2-induced change in bladder capacity and increased the external urethral sphincter electromyogram activity at a specific stimulation condition (amplitude of 1.0 times threshold at 10 Hz). These results confirm that the urodynamic changes reported in conscious rats are also observed under urethane anesthesia and that PelN stimulation is a novel and promising approach for the treatment of the symptoms of OAB.


Assuntos
Dinoprostona , Terapia por Estimulação Elétrica/métodos , Plexo Hipogástrico/fisiopatologia , Contração Muscular , Músculo Liso/inervação , Bexiga Urinária Hiperativa/terapia , Bexiga Urinária/inervação , Urodinâmica , Animais , Modelos Animais de Doenças , Eletromiografia , Feminino , Pressão , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Fatores de Tempo , Uretra/inervação , Bexiga Urinária Hiperativa/induzido quimicamente , Bexiga Urinária Hiperativa/fisiopatologia
14.
Sci Transl Med ; 7(296): 296ra111, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26180101

RESUMO

Malaria is one of the most significant causes of childhood mortality, but disease control efforts are threatened by resistance of the Plasmodium parasite to current therapies. Continued progress in combating malaria requires development of new, easy to administer drug combinations with broad-ranging activity against all manifestations of the disease. DSM265, a triazolopyrimidine-based inhibitor of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH), is the first DHODH inhibitor to reach clinical development for treatment of malaria. We describe studies profiling the biological activity, pharmacological and pharmacokinetic properties, and safety of DSM265, which supported its advancement to human trials. DSM265 is highly selective toward DHODH of the malaria parasite Plasmodium, efficacious against both blood and liver stages of P. falciparum, and active against drug-resistant parasite isolates. Favorable pharmacokinetic properties of DSM265 are predicted to provide therapeutic concentrations for more than 8 days after a single oral dose in the range of 200 to 400 mg. DSM265 was well tolerated in repeat-dose and cardiovascular safety studies in mice and dogs, was not mutagenic, and was inactive against panels of human enzymes/receptors. The excellent safety profile, blood- and liver-stage activity, and predicted long half-life in humans position DSM265 as a new potential drug combination partner for either single-dose treatment or once-weekly chemoprevention. DSM265 has advantages over current treatment options that are dosed daily or are inactive against the parasite liver stage.


Assuntos
Antimaláricos/química , Inibidores Enzimáticos/química , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirimidinas/química , Triazóis/química , Administração Oral , Animais , Antimaláricos/farmacocinética , Área Sob a Curva , Células CACO-2 , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Cães , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Haplorrinos , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Plasmodium falciparum , Pirimidinas/farmacocinética , Coelhos , Especificidade por Substrato , Triazóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA