Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(3): 736-747, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758543

RESUMO

In vitro systems that mimic organ functionality have become increasingly important tools in drug development studies. Systems that measure the functional properties of skeletal muscle are beneficial to compound screening studies and also for integration into multiorgan devices. To date, no studies have investigated human skeletal muscle responses to drug treatments at the single myotube level in vitro. This report details a microscale cantilever chip-based assay system for culturing individual human myotubes. The cantilevers, along with a laser and photo-detector system, enable measurement of myotube contractions in response to broad-field electrical stimulation. This system was used to obtain baseline functional parameters for untreated human myotubes, including peak contractile force and time-to-fatigue data. The cultured myotubes were then treated with known myotoxic compounds and the resulting functional changes were compared to baseline measurements as well as known physiological responses in vivo. The collected data demonstrate the system's capacity for screening direct effects of compound action on individual human skeletal myotubes in a reliable, reproducible, and noninvasive manner. Furthermore, it has the potential to be utilized for high-content screening, disease modeling, and exercise studies of human skeletal muscle performance utilizing iPSCs derived from specific patient populations such as the muscular dystrophies.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Biológicos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético , Atorvastatina/toxicidade , Células Cultivadas , Doxorrubicina/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Distrofias Musculares/metabolismo
2.
Lab Chip ; 16(13): 2408-17, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27272753

RESUMO

Micronutrient deficiency is widespread and negatively impacts morbidity, mortality, and quality of life globally. On-going advancements in nutritional biomarker discovery are enabling objective and accurate assessment of an individual's micronutrient and broader nutritional status. The vast majority of such assessment however still needs to be conducted in traditional centralized laboratory facilities which are not readily accessible in terms of cost and time in both the developed and developing countries. Lab-on-a-chip (LOC) technologies are enabling an increasing number of biochemical reactions at the point-of-need (PON) settings, and can significantly improve the current predicament in nutrition diagnostics by allowing rapid evaluation of one's nutritional status and providing an easy feedback mechanism for tracking changes in diet or supplementation. We believe that nutrition diagnostics represents a particularly appealing opportunity over other PON applications for two reasons: (1) healthy ranges for many micronutrients are well defined which allows for an unbiased diagnosis, and (2) many deficiencies can be reversed through changes in diet or supplementation before they become severe. In this paper, we provide background on nutritional biomarkers used in nutrition diagnostics and review the emerging technologies that exploit them at the point-of-need.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas de Diagnóstico Molecular/métodos , Estado Nutricional , Medicina de Precisão/instrumentação , Biomarcadores/análise , Exposição Dietética/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Humanos , Micronutrientes/deficiência , Técnicas de Diagnóstico Molecular/instrumentação , Testes Imediatos , Medicina de Precisão/métodos , Smartphone/instrumentação , Cisto do Úraco/metabolismo
3.
Sci Rep ; 6: 20030, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26837601

RESUMO

We report on a functional human model to evaluate multi-organ toxicity in a 4-organ system under continuous flow conditions in a serum-free defined medium utilizing a pumpless platform for 14 days. Computer simulations of the platform established flow rates and resultant shear stress within accepted ranges. Viability of the system was demonstrated for 14 days as well as functional activity of cardiac, muscle, neuronal and liver modules. The pharmacological relevance of the integrated modules were evaluated for their response at 7 days to 5 drugs with known side effects after a 48 hour drug treatment regime. The results of all drug treatments were in general agreement with published toxicity results from human and animal data. The presented phenotypic culture model exhibits a multi-organ toxicity response, representing the next generation of in vitro systems, and constitutes a step towards an in vitro "human-on-a-chip" assay for systemic toxicity screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Fígado/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura Livres de Soro , Células Hep G2 , Humanos , Células-Tronco Pluripotentes Induzidas , Dispositivos Lab-On-A-Chip , Fígado/citologia , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Miócitos Cardíacos/citologia , Neurônios/citologia
4.
Exp Biol Med (Maywood) ; 239(9): 1225-39, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24951471

RESUMO

The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology, and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a "body-on-a-chip", and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Farmacocinética , Técnicas de Cultura de Tecidos , Animais , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA