Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 233(1): 505-514, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626495

RESUMO

Many plant species simultaneously interact with multiple symbionts, which can, but do not always, generate synergistic benefits for their host. We ask if plant life history (i.e. annual vs perennial) can play an important role in the outcomes of the tripartite symbiosis of legumes, arbuscular mycorrhizal fungi (AMF), and rhizobia. We performed a meta-analysis of 88 studies examining outcomes of legume-AMF-rhizobia interactions on plant and microbial growth. Perennial legumes associating with AMF and rhizobia grew larger than expected based on their response to either symbiont alone (i.e. their response to co-inoculation was synergistic). By contrast, annual legume growth with co-inoculation did not differ from additive expectations. AMF and rhizobia differentially increased phosphorus (P) and nitrogen (N) tissue concentration. Rhizobium nodulation increased with mycorrhizal fungi inoculation, but mycorrhizal fungi colonization did not increase with rhizobium inoculation. Microbial responses to co-infection were significantly correlated with synergisms in plant growth. Our work supports a balanced plant stoichiometry mechanism for synergistic benefits. We find that synergisms are in part driven by reinvestment in complementary symbionts, and that time-lags in realizing benefits of reinvestment may limit synergisms in annuals. Optimization of microbiome composition to maximize synergisms may be critical to productivity, particularly for perennial legumes.


Assuntos
Fabaceae , Micorrizas , Rhizobium , Fósforo , Raízes de Plantas , Simbiose
2.
An. acad. bras. ciênc ; 90(1): 357-371, Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886906

RESUMO

ABSTRACT Arbuscular mycorrhizal fungi provide several ecosystem services, including increase in plant growth and nutrition. The occurrence, richness, and structure of arbuscular mycorrhizal fungi communities are influenced by human activities, which may affect the functional benefits of these components of the soil biota. In this study, 13 arbuscular mycorrhizal fungi isolates originating from soils with different land uses in the Alto Solimões-Amazon region were evaluated regarding their effect on growth, nutrition, and cowpea yield in controlled conditions using two soils. Comparisons with reference isolates and a mixture of isolates were also performed. Fungal isolates exhibited a wide variability associated with colonization, sporulation, production of aboveground biomass, nitrogen and phosphorus uptake, and grain yield, indicating high functional diversity within and among fungal species. A generalized effect of isolates in promoting phosphorus uptake, increase in biomass, and cowpea yield was observed in both soils. The isolates of Glomus were the most efficient and are promising isolates for practical inoculation programs. No relationship was found between the origin of fungal isolate (i.e. land use) and their symbiotic performance in cowpea.


Assuntos
Solo/química , Microbiologia do Solo , Simbiose/fisiologia , Micorrizas/isolamento & purificação , Micorrizas/fisiologia , Vigna/crescimento & desenvolvimento , Fósforo/análise , Fatores de Tempo , Brasil , Raízes de Plantas/microbiologia , Biodiversidade , Vigna/microbiologia , Nitrogênio/análise
3.
An Acad Bras Cienc ; 90(1): 357-371, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29424389

RESUMO

Arbuscular mycorrhizal fungi provide several ecosystem services, including increase in plant growth and nutrition. The occurrence, richness, and structure of arbuscular mycorrhizal fungi communities are influenced by human activities, which may affect the functional benefits of these components of the soil biota. In this study, 13 arbuscular mycorrhizal fungi isolates originating from soils with different land uses in the Alto Solimões-Amazon region were evaluated regarding their effect on growth, nutrition, and cowpea yield in controlled conditions using two soils. Comparisons with reference isolates and a mixture of isolates were also performed. Fungal isolates exhibited a wide variability associated with colonization, sporulation, production of aboveground biomass, nitrogen and phosphorus uptake, and grain yield, indicating high functional diversity within and among fungal species. A generalized effect of isolates in promoting phosphorus uptake, increase in biomass, and cowpea yield was observed in both soils. The isolates of Glomus were the most efficient and are promising isolates for practical inoculation programs. No relationship was found between the origin of fungal isolate (i.e. land use) and their symbiotic performance in cowpea.


Assuntos
Micorrizas/isolamento & purificação , Micorrizas/fisiologia , Microbiologia do Solo , Solo/química , Simbiose/fisiologia , Vigna/crescimento & desenvolvimento , Vigna/microbiologia , Biodiversidade , Brasil , Nitrogênio/análise , Fósforo/análise , Raízes de Plantas/microbiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA