Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Phytomedicine ; 123: 155242, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100922

RESUMO

BACKGROUND: This study employed a meta-analysis to evaluate the efficacy and safety of adjunctive treatment with injectable Lentinan (LNT) in combination with chemotherapy for gastric cancer (GC). METHODS: Computer-based searches of 6 databases were performed to identify randomized controlled trials (RCTs) relevant to the treatment of GC with LNT through mid-March 2023. Two independent researchers performed risk of bias assessment and trial sequential analysis(TSA), extracted the data and used Revman 5.3 software for data analysis. The certainty of evidence was graded based on the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. RESULTS: A total of 31 RCTs with 2729 patients were included in the analysis. The results revealed that adjunctive therapy with LNT was associated with improved treatment efficacy (RR = 1.48, 95%CI: 1.36 ∼ 1.61, p < 0.00001), improvement in clusters of differentiation (CD3+, CD4+, and CD4+/CD8+), natural killer (NK) cells, and quality of life assessment (RR = 1.32, 95%CI: 1.20 ∼ 1.45, p < 0.00001) compared to using chemotherapy alone. In addition, there was a reduction in CD8+ levels, incidence of white blood cell decline, gastrointestinal reactions, and platelet decline. TSA results indicated that there was sufficient evidence to draw firm conclusions about these outcomes, and the GRADE scores showed 'high' or 'moderate' quality of evidence for these outcomes. CONCLUSION: The efficacy of treatment of GC with LNT in combination with chemotherapy was found to be better than chemotherapy alone. And no serious adverse effects were observed. However, further RCTs are needed to further validate the results of this study.


Assuntos
Lentinano , Neoplasias Gástricas , Humanos , Lentinano/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Resultado do Tratamento
2.
Medicine (Baltimore) ; 102(34): e34866, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653800

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide, leading to a pandemic. In China, Xiyanping injection (XYP) has been recommended as a drug for COVID-19 treatment in the Guideline on Diagnosis and Treatment of COVID-19 by the National Health Commission of the People Republic of China and National Administration of Traditional Chinese Medicine (Trial eighth Edition). However, the relevant mechanisms at the molecular-level need to be further elucidated. METHODS: In this study, XYP related active ingredients, potential targets and COVID-19 related genes were searched in public databases. Protein-protein interaction network and module analyzes were used to screen for key targets. gene ontology and Kyoto encyclopedia of genes and genomes were performed to investigate the potentially relevant signaling pathways. Molecular docking was performed using Autodock Tools and Vina. For the validation of potential mechanism, PolyI:C was used to induce human lung epithelial cells for an inflammation model. Subsequently, CCK-8 assays, enzyme-linked immunosorbent assay, reverse transcription quantitative polymerase chain reaction and western blot were employed to determine the effect of XYP on the expression of key genes. RESULTS: Seven effective active ingredients in XYP were searched for 123 targets in the relevant databases. Furthermore, 6446 COVID-19 disease targets were identified. Sodium 9-dehydro-17-hydro-andrographolide-19-yl sulfate was identified as the vital active compounds, and IL-6, TNF, IL-1ß, CXCL8, STAT3, MAPK1, MAPK14, and MAPK8 were considered as the key targets. In addition, molecular docking revealed that the active compound and the targets showed good binding affinities. The enrichment analysis predicted that the XYP could regulate the IL-17, Toll-like receptor, PI3K-Akt and JAK-STAT signaling pathways. Consistently, further in vitro experiments demonstrated that XYP could slow down the cytokine storm in the lung tissue of COVID-19 patients by down-regulating IL-6, TNF-α, IL-1ß, CXCL8, and p-STAT3. CONCLUSION: Through effective network pharmacology analysis and molecular docking, this study suggests that XYP contains many effective compounds that may target COVID-19 related signaling pathways. Moreover, the in vitro experiment confirmed that XYP could inhibit the cytokine storm by regulating genes or proteins related to immune and inflammatory responses.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Mapas de Interação de Proteínas , Transdução de Sinais , Simulação de Acoplamento Molecular , Células Epiteliais , Células Cultivadas , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas
3.
Phytomedicine ; 118: 154984, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487253

RESUMO

BACKGROUND: Gastric carcinoma (GC) treatment needs to be developed rapidly. Compound Kushen Injection (CKI), a formula from traditional Chinese medicine, has been used clinically in combination with chemotherapy to treat GC with satisfactory results. However, the molecular mechanism by which CKI acts to cure GC is still unclear. METHODS: In the present study, in vivo and in vitro experiments were used to assess the efficacy of CKI. Using ceRNA microarray and TMT technologies, the molecular mechanism of CKI was further investigated at the transcriptional and protein levels, and a bioinformatics approach was employed to investigate and functionally validate key CKI targets in GC. RESULTS: When combined with cisplatin (DDP), CKI significantly increased its efficacy in preventing the proliferation and metastasis of GC cells and malignant-looking tumors in mice. High-throughput sequencing data and bioinformatics analysis showed that CKI regulated the TNF signaling pathway, epithelial-mesenchymal transition (EMT), with VCAM1 as a key target. The transcription factors CEBPB, JUN, RELA, NFKB1, the EMT mesenchymal-like cell markers N-cadherin and vimentin, as well as the expression of VCAM1 and its upstream signaling driver TNF, were all downregulated by CKI. In contrast, the expression of the EMT epithelial-like cell marker E-cadherin was upregulated. CONCLUSION: CKI can effectively inhibit GC growth and metastasis, improve body's immunity, and protect normal tissues from damage. The molecular mechanism by which CKI inhibits metastasis of GC is by regulating VCAM1 induced by the TNF signaling pathway to inhibit EMT of GC. Our results provide an important clue to clarify precisely the multi-scale molecular mechanism of CKI in the treatment of GC.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Gástricas , Animais , Camundongos , Transição Epitelial-Mesenquimal , Antineoplásicos/farmacologia , Transdução de Sinais , Neoplasias Gástricas/genética , Caderinas , Linhagem Celular Tumoral
4.
J Ethnopharmacol ; 310: 116418, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36990301

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yinzhihuang granule (YZHG) has liver protective effect and can be used for clinical treatment of non-alcoholic fatty liver disease (NAFLD), but its material basis and mechanism need to be further clarified. AIM OF THE STUDY: This study aims to reveal the material basis and mechanism of YZHG treating NAFLD. MATERIALS AND METHODS: Serum pharmacochemistry were employed to identify the components from YZHG. The potential targets of YZHG against NAFLD were predicted by system biology and then preliminarily verified by molecular docking. Furthermore, the functional mechanism of YZHG in NAFLD mice was elucidated by 16S rRNA sequencing and untargeted metabolomics. RESULTS: From YZHG, 52 compounds were identified, of which 42 were absorbed into the blood. Network pharmacology and molecular docking showed that YZHG treats NAFLD with multi-components and multi-targets. YZHG can improve the levels of blood lipids, liver enzymes, lipopolysaccharide (LPS), and inflammatory factors in NAFLD mice. YZHG can also significantly improve the diversity and richness of intestinal flora and regulate glycerophospholipid and sphingolipid metabolism. Moreover, Western Blot experiment showed that YZHG can regulate liver lipid metabolism and enhance intestinal barrier function. CONCLUSIONS: YZHG may treat NAFLD by improving the disruption of intestinal flora and enhancing the intestinal barrier. This will reduce the invasion of LPS into the liver subsequently regulate liver lipid metabolism and reduce liver inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Fígado
5.
Chin Med ; 18(1): 7, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641437

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal cancers worldwide. Aidi injection (ADI) is a representative antitumor medication based on Chinese herbal injection, but its antitumor mechanisms are still poorly understood. MATERIALS AND METHODS: In this work, the subcutaneous xenograft model of human pancreatic cancer cell line Panc-1 was established in nude mice to investigate the anticancer effect of ADI in vivo. We then determined the components of ADI using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) and explored the possible molecular mechanisms against pancreatic cancer using network pharmacology. RESULTS: In vivo experiments, the volume, weight, and degree of histological abnormalities of implanted tumors were significantly lower in the medium and high concentration ADI injection groups than in the control group. Network pharmacology analysis identified four active components of ADI and seven key targets, TNF, VEGFA, HSP90AA1, MAPK14, CASP3, P53 and JUN. Molecular docking also revealed high affinity between the active components and the target proteins, including Astragaloside IV to P53 and VEGFA, Ginsenoside Rb1 to CASP3 and Formononetin to JUN. CONCLUSION: ADI could reduce the growth rate of tumor tissue and alleviate the structural abnormalities in tumor tissue. ADI is predicted to act on VEGFA, P53, CASP3, and JUN in ADI-mediated treatment of pancreatic cancer.

6.
Medicine (Baltimore) ; 101(27): e29829, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801781

RESUMO

Coronary artery disease (CAD) is a cardiovascular disease characterized by atherosclerosis, angiogenesis, thrombogenesis, inflammation, etc. Xintong granule (XTG) is considered a practical therapeutic strategy in China for CAD. Although its therapeutic role in CAD has been reported, the molecular mechanisms of XTG in CAD have not yet been explored. A network pharmacology approach including drug-likeness (DL) evaluation, oral bioavailability (OB) prediction, protein-protein interaction (PPI) network construction and analysis, and Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses was used to predict the active ingredients, potential targets, and molecular mechanisms of XTG associated with the treatment of CAD. Molecular docking analysis was performed to investigate the interactions between the active compounds and the underlying targets. Fifty-one active ingredients of XTG and 294 CAD-related targets were screened for analysis. Gene Ontology enrichment analysis showed that the therapeutic targets of XTG in CAD are mainly involved in blood circulation and vascular regulation. KEGG pathway analysis indicated that XTG intervenes in CAD mainly through the regulation of fluid shear stress and atherosclerosis, the AGE-RAGE signaling pathway in diabetic complications, and the relaxin signaling pathway. Molecular docking analysis showed that each key active ingredient (quercetin, luteolin, kaempferol, stigmasterol, resveratrol, fisetin, gamma-sitosterol, and beta-sitosterol) of XTG can bind to the core targets of CAD (AKT1, JUN, RELA, MAPK8, NFKB1, EDN1, and NOS3). The present study revealed the CAD treatment-related active ingredients, underlying targets, and potential molecular mechanisms of XTG acting by regulating fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, and relaxin signaling pathway.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Medicamentos de Ervas Chinesas , Relaxina , Doença da Artéria Coronariana/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede
7.
Comput Biol Med ; 146: 105535, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35487124

RESUMO

Embelin was isolated from the chloroform extract of Embelia ribes (Burm.f.) fruits; its derivative compounds 6-bromoembelin and vilangin were prepared, and they were evaluated for mosquitocidal activities against the third instar larvae and pupae of Aedes aegypti L. and Culex quinquefasciatus Say. (Diptera: Culicidae). The concentrations used were 0.5, 1.0, 1.5, and 2.0 ppm. Embelin recorded LC50 values of 5.79 and 5.54 ppm against the larvae of Ae. aegypti and Cx. quinquefasciatus, respectively. Similarly, the LC50 values of embelin were 10.23 and 6.93 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. Of the two derivatives tested, vilangin showed the highest larvicidal activity with LC50 values of 1.38 and 1.28 ppm against the larvae of Ae. aegypti and Cx. quinquefasciatus, respectively. Similarly, the LC50 values of vilangin were 1.60 and 1.43 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. The LC50 values of 6-bromoembelin were 3.30 and 2.83 ppm against the larvae and 4.40 and 4.30 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. The histopathological results displayed significant damage on cuboidal cells of the midgut (CU) in vilangin treated larvae of Ae. aegypti and Cx. quinquefasciatus at a concentration of 2.0 ppm. Similarly, peritrophic membrane (PM) was completely impaired in vilangin-treated larvae of Cx. quinquefasciatus and midgut content (MC) was very low in vilangin-treated larvae of Cx. quinquefasciatus. In addition, molecular docking and molecular dynamics studies demonstrated the efficacy of vilangin on the inhibition of acetylcholinesterase (AChE1) in Ae. aegypti and Cx. quinquefasciatus. The present results suggest that vilangin could be used to develop a natural active product against mosquito larvae.


Assuntos
Aedes , Culex , Acetilcolinesterase , Animais , Benzoquinonas , Larva , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia
8.
Biomed Res Int ; 2022: 6213865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342754

RESUMO

Background: The Chinese patent drug Yinzhihuang granule (YZHG) is used to treat hepatitis B. This research is aimed at exploring the multicomponent synergistic mechanism of YZHG in the treatment of inflammation-cancer transformation of hepar and at providing new evidence and insights for its clinical application. Methods: To retrieve the components and targets of Yinzhihuang granules. The differentially expressed genes (DEGs) of hepar inflammation-cancer transformation were obtained from TTD, PharmGKB, and GEO databases. Construct the compound-prediction target network and the key module network using Cytoscape 3.7.1. Results: The results show that hepatitis B and hepatitis C shared a common target, MMP2. CDK1 and TOP2A may play an important role in the treatment with YZHG in hepatitis B inflammatory cancer transformation. KEGG pathway enrichment showed that key genes of modules 1, 2, and 4 were mainly enriched in the progesterone-mediated oocyte maturation signaling pathway and oocyte meiosis signaling pathway. Conclusion: The multicomponent, multitarget, and multichannel pharmacological benefits of YZHG in the therapy of inflammation-cancer transition of hepar are directly demonstrated by network pharmacology, providing a scientific basis for its mechanism.


Assuntos
Medicamentos de Ervas Chinesas , Hepatite B , Neoplasias , Biologia Computacional , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hepatite B/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Medicina Tradicional Chinesa , Neoplasias/tratamento farmacológico , Neoplasias/genética , Farmacologia em Rede
9.
BMC Complement Med Ther ; 22(1): 54, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236335

RESUMO

BACKGROUND: Compound Kushen Injection (CKI) is a Chinese patent drug that exerts curative effects in the clinical treatment of hepatocellular carcinoma (HCC). This study aimed to explore the targets and potential pharmacological mechanisms of CKI in the treatment of HCC. METHODS: In this study, network pharmacology was used in combination with molecular biology experiments to predict and verify the molecular mechanism of CKI in the treatment of HCC. The constituents of CKI were identified by UHPLC-MS/MS and literature search. The targets corresponding to these compounds and the targets related to HCC were collected based on public databases. To screen out the potential hub targets of CKI in the treatment of HCC, a compound-HCC target network was constructed. The underlying pharmacological mechanism was explored through the subsequent enrichment analysis. Interactive Gene Expression Profiling Analysis and Kaplan-Meier plotter were used to examine the expression and prognostic value of hub genes. Furthermore, the effects of CKI on HCC were verified through molecular docking simulations and cell experiments in vitro. RESULTS: Network analysis revealed that BCHE, SRD5A2, EPHX2, ADH1C, ADH1A and CDK1 were the key targets of CKI in the treatment of HCC. Among them, only CDK1 was highly expressed in HCC tissues, while the other 5 targets were lowly expressed. Furthermore, the six hub genes were all closely related to the prognosis of HCC patients in survival analysis. Molecular docking revealed that there was an efficient binding potential between the constituents of CKI and BCHE. Experiments in vitro proved that CKI inhibited the proliferation of HepG2 cells and up-regulated SRD5A2 and ADH1A, while down-regulated CDK1 and EPHX2. CONCLUSIONS: This study revealed and verified the targets of CKI on HCC based on network pharmacology and experiments and provided a scientific reference for further mechanism research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Biologia Computacional , Medicamentos de Ervas Chinesas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana , Simulação de Acoplamento Molecular , Farmacologia em Rede , Espectrometria de Massas em Tandem
10.
Front Pharmacol ; 13: 839936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281886

RESUMO

Introduction: Danhong injection (DHI) is a traditional Chinese medicine preparation commonly used in the clinical treatment of acute myocardial infarction (AMI). In this study, the active components of DHI and its mechanism in the treatment of AMI were investigated. Methods: The chemical components of DHI were detected by the ultra-high-performance liquid chromatography-linear trap quadrupole-orbitrap-tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS), and the targets and pathways of DHI in the treatment of AMI were analyzed by systems pharmacology, which was verified by molecular docking and animal experiments. Results: A total of 12 active components of DHI were obtained, and 158 common targets of component and disease were identified by systems pharmacology. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that DHI is closely related to the calcium signaling pathway in the treatment of AMI. Molecular docking showed that the key target protein has good binding affinity to related compounds. The experimental results showed that compared with the model group, LVAWs, EF, and FS significantly (p < 0.05) increased in the DHI group. The percentage of myocardial infarction significantly (p < 0.01) decreased, both in the ventricular and total cardiac regions, and the pathological damage of myocardial tissue also decreased. In addition, the expression of the protein CaMK II decreased (p < 0.01) and the expression of SERCA significantly increased (p < 0.01). Conclusion: This study revealed that ferulic acid, caffeic acid and rosmarinic acid could inhibit AMI by regulating PLB, CaMK II, SERCA, etc. And mechanistically, calcium signaling pathway was critically involved. Combination of systems pharmacology prediction with experimental validation may provide a scientific basis for in-depth clinical investigation of the material basis of DHI.

11.
J Ethnopharmacol ; 285: 114852, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838619

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pancreatic cancer is a common malignancy worldwide due to its poor prognosis and high mortality rate. It is clinically proven that the combination of chemotherapeutic drugs and Traditional Chinese Medicine injections (TCMIs) significantly improves the therapeutic effect. AIM OF THE STUDY: To evaluate the efficacy and clinical benefits of TCMIs in combination with chemotherapy in the treatment of pancreatic cancer and to explore the mechanism of clinical advantage of Aidi injection. METHODS: Randomized controlled trials (RCTs) were searched in databases by NMA before December 29, 2020. WinBUGS 1.4, Stata 14.0, and R 4.0.4 software were used for calculations. All results were expressed as odds ratios and 95% credible intervals. Through the network pharmacology method, the chemical components and their targets, as well as the disease targets were further analyzed. And then, biological experiments were integrated to verify the results of network pharmacology analysis. (PROSPERO ID: CRD42021283559). RESULTS: A total of 33 RCTs with 8 TCMIs and 2011 patients were included. The results of NMA showed that Aidi injection can significantly improve the clinical efficacy (OR = 0.34, 95%CI: 0.16-0.74), and the clinical advantage was that it can significantly alleviate the leukopenia and thrombocytopenia caused by chemotherapy (OR = 5.65, 95%CI: 1.18-28.13). A total of 23 chemical compounds and 280 potential targets for Aidi injection were obtained from the online databases. Among them, there were 22 compounds, 50 targets and 211 signaling pathways closely related to leukopenia. Five genes were predicted to be core targets of ADI in alleviating leukopenia, and 2 of them (TP53 and VEGFA) were confirmed by biological experiments as regulatory targets of ADI in the treatment of PC. CONCLUSIONS: In conclusion, TCMIs in combination with chemotherapy, can improve clinical efficacy and safety in the treatment of pancreatic cancer. However, the overall evidence base is low, and large samples with multi-center RCTs are still needed to support further research findings. Aidi injection can alleviate leukopenia mainly by intervening in oxidative stress, regulating cell proliferation and apoptosis, and regulating the inflammatory response. The combined application of NMA, network pharmacology, and biological experiments provides a reference for clinical evaluation and mechanism of action exploration of other drugs.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Metanálise em Rede , Farmacologia em Rede , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos Fitogênicos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Injeções
12.
Medicine (Baltimore) ; 100(51): e27112, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34941025

RESUMO

BACKGROUND: The traditional Chinese medicine prescription Suhexiang Pill (SHXP), a classic prescription for the treatment of plague, has been recommended in the 2019 Guideline for coronavirus disease 2019 (COVID-19) diagnosis and treatment of a severe type of COVID-19. However, the bioactive compounds and underlying mechanisms of SHXP for COVID-19 prevention and treatment have not yet been elucidated. This study investigates the mechanisms of SHXP in the treatment of COVID-19 based on network pharmacology and molecular docking. METHODS: First, the bioactive ingredients and corresponding target genes of the SHXP were screened from the traditional Chinese medicine systems pharmacology database and analysis platform database. Then, we compiled COVID-19 disease targets from the GeneCards gene database and literature search. Subsequently, we constructed the core compound-target network, the protein-protein interaction network of the intersection of compound targets and disease targets, the drug-core compound-hub gene-pathway network, module analysis, and hub gene search by the Cytoscape software. The Metascape database and R language software were applied to analyze gene ontology biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Finally, AutoDock software was used for molecular docking of hub genes and core compounds. RESULTS: A total of 326 compounds, 2450 target genes of SHXP, and 251 genes related to COVID-19 were collected, among which there were 6 hub genes of SHXP associated with the treatment of COVID-19, namely interleukin 6, interleukin 10, vascular endothelial growth factor A, signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor (TNF), and epidermal growth factor. Functional enrichment analysis suggested that the effect of SHXP against COVID-19 is mediated by synergistic regulation of several biological signaling pathways, including Janus kinase/ STAT3, phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt), T cell receptor, TNF, Nuclear factor kappa-B, Toll-like receptor, interleukin 17, Chemokine, and hypoxia-inducible factor 1 signaling pathways. SHXP may play a vital role in the treatment of COVID-19 by suppressing the inflammatory storm, regulating immune function, and resisting viral invasion. Furthermore, the molecular docking results showed an excellent binding affinity between the core compounds and the hub genes. CONCLUSION: This study preliminarily predicted the potential therapeutic targets, signaling pathways, and molecular mechanisms of SHXP in the treatment of severe COVID-19, which include the moderate immune system, relieves the "cytokine storm," and anti-viral entry into cells.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular
13.
Front Cell Dev Biol ; 9: 742421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646828

RESUMO

Gastric carcinoma (GC) is a severe tumor of the digestive tract with high morbidity and mortality and poor prognosis, for which novel treatment options are urgently needed. Compound Kushen injection (CKI), a classical injection of Chinese medicine, has been widely used to treat various tumors in clinical practice for decades. In recent years, a growing number of studies have confirmed that CKI has a beneficial therapeutic effect on GC, However, there are few reports on the potential molecular mechanism of action. Here, using systems pharmacology combined with proteomics analysis as a core concept, we identified the ceRNA network, key targets and signaling pathways regulated by CKI in the treatment of GC. To further explore the role of these key targets in the development of GC, we performed a meta-analysis to compare the expression differences between GC and normal gastric mucosa tissues. Functional enrichment analysis was further used to understand the biological pathways significantly regulated by the key genes. In addition, we determined the significance of the key genes in the prognosis of GC by survival analysis and immune infiltration analysis. Finally, molecular docking simulation was performed to verify the combination of CKI components and key targets. The anti-gastric cancer effect of CKI and its key targets was verified by in vivo and in vitro experiments. The analysis of ceRNA network of CKI on GC revealed that the potential molecular mechanism of CKI can regulate PI3K/AKT and Toll-like receptor signaling pathways by interfering with hub genes such as AKR1B1, MMP2 and PTGERR3. In conclusion, this study not only partially highlighted the molecular mechanism of CKI in GC therapy but also provided a novel and advanced systems pharmacology strategy to explore the mechanisms of traditional Chinese medicine formulations.

14.
Medicine (Baltimore) ; 100(37): e26643, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34664825

RESUMO

BACKGROUND: Guiqi huoxue capsule (GQHXC) is a patented Chinese medicine used for treating a liver and kidney deficiency and blood stasis syndrome due to qi deficiency. It is caused by cervical spondylosis (cervical spondylotic radiculopathy (CSR), mixed cervical spondylosis mainly composed of nerve root type). Its underlying mechanisms need, however, to be further clarified. METHODS: In this study, collecting compounds, predicting therapeutic targets, constructing networks, and analyzing biological functions and pathways were based on network pharmacology analysis. In addition, molecular docking verification was engaged to assess the binding potential of selected target-compound pairs. RESULTS: We established 5 networks: compound-putative target network of GQHXC, protein-protein interaction (PPI) network related to CSR, compound-CSR target network, potential therapeutic targets PPI network, and herb-compound-target-pathway network. Network analysis indicated that 7 targets (tumor necrosis factor [TNF], interleukin 6 [IL6], nitric oxide synthase 3 [NOS3], Interleukin-8 [CXCL8], prostaglandin-endoperoxide synthase 2 [PTGS2], vascular endothelial growth factor A [VEGFA], and AP-1 transcription factor subunit [JUN]) might be the therapeutic targets of GQHXC in CSR. Moreover, molecular docking verification showed that TNF, IL6, NOS3, CXCL8, PTGS2, VEGFA, and JUN had a good is interaction with the corresponding compounds. Furthermore, enrichment analysis indicated that GQHXC might exert a curative role in CSR by regulating some important pathways, such as TNF signaling pathway, NF-kappa B signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and so on. CONCLUSION: Our study preliminarily explained the underlying mechanisms of GQHXC for treating CSR, and molecular docking verification was adopted as an additional verification. These findings laid a valuable foundation for experimental research and further application of GQHXC in the clinical treatment of CSR.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Espondilose/tratamento farmacológico , Administração Oral , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Simulação de Acoplamento Molecular/métodos , Farmacologia/métodos
15.
Front Pharmacol ; 12: 739673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552496

RESUMO

Introduction: As non-small cell lung cancer (NSCLC) seriously threatens human health, several clinical studies have reported that Chinese herbal injections (CHIs) in combination with and gemcitabine plus cisplatin (GP) are beneficial. This multidimensional network meta-analysis aimed to compare the clinical efficacy and safety of different CHIs in combination with GP against NSCLC. Methods: Randomized controlled trials (RCTs) for the treatment of NSCLC were retrieved from seven electronic databases from inception to April 30, 2020. Study selection and data extraction were based on a priori criteria. Data analysis was performed using Stata 13.0, WinBUGS 14.0 software. Multidimensional cluster analysis was performed using the "scatterplot3d" package in R 3.6.1 software. Results: This network meta-analysis included 71 eligible RCTs and 10 Chinese herbal injections. Delisheng injection and Kangai injection had the highest probability in terms of clinical effectiveness rate (94.60%) and gastrointestinal reactions (82.62%) when combined with GP compared with the other interventions. Compound Kushen injection combined with GP ranked ahead of the other interventions in terms of performance status (73.36%) and abnormal liver function (87.17%). Shenmai injection combined with GP had the highest probability in terms of leukopenia (94.59%) and thrombocytopenia (99.18%). Conclusion: The current evidence revealed that CHIs combined with GP have a better impact on patients with NSCLC than GP alone. Aidi injection, Compound kushen injection, and Kanglaite injection deserve more attention of clinicians when combined with GP in patients with NSCLC. Additionally, due to the limitations of this network meta-analysis, further well-designed, large-sample, multicenter RCTs are required to support our findings adequately.

16.
J Ethnopharmacol ; 279: 114386, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34224810

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Esophageal cancer, as a high incidence of gastrointestinal cancer, has an indelible impact on human life and health. The combination of Chinese herbal injections and chemotherapy is commonly applied in the treatment of Esophageal cancer. AIM OF THE STUDY: This study aimed to confirm the clinical advantage of Compound Kushen Injection to treat esophageal cancer and explore its molecular mechanism. METHODS: The network meta-analysis method was used for the clinical evaluation of anti-tumor Chinese herbal injections. Initially, several electronic databases were searched to identify randomized controlled trials regarding Chinese herbal injections to treat esophageal cancer from their inception to September 5, 2020. Then, WinBugs and Stata software was used to calculate and analyze the outcome indicators, including total clinical efficiency, improvement of quality of life and adverse reactions. Furthermore, the surface under the cumulative ranking curve and three-dimensional cluster analysis were used to rank the efficacy and safety of Chinese herbal injections about each outcome. Cell Counting Kit-8 assay was used to observe the effect of Compound Kushen Injection on the proliferation of esophageal cancer cells. Real-Time Quantitative PCR and Western Blot analysis were used to detect the mRNA and protein expression of EGFR and AURKA in ESCA cells. RESULTS: The surface under the cumulative ranking curve of Compound Kushen Injection combined with chemotherapy in total clinical efficiency, quality of life, reduction of nausea and vomiting were ranking at 89.1%, 81.8% and 92.4%, respectively. Compound Kushen Injection was determined as the dominant variety in the treatment of esophageal cancer which can inhibit the proliferation of esophageal cancer cells and downregulate the overexpression of EGFR and AURKA mRNA and protein. CONCLUSION: In this study, network meta-analysis was applied to confirm that Compound Kushen Injection has a curative effect on esophageal cancer and is superior to other anti-tumor Chinese herbal injections. Combined with the network pharmacology and in vitro experiment, the mechanism of Compound Kushen Injection inhibiting the proliferation of esophageal cancer cells by regulating the abnormal expression of EGFR and AURKA was revealed.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Farmacologia em Rede
17.
Food Chem Toxicol ; 66: 358-65, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24525096

RESUMO

The aim of this study was to evaluate the antidiabetic activity of Cyamopsis tetragonoloba (L.) Taub. (Fabaceae) beans in high-fat diet (HFD) fed-streptozotocin (STZ)-induced type 2 diabetic rats. Dose dependent response of oral treatment of C. tetragonoloba beans' methanol extract (CTme) (200 and 400mg/kg b wt.) was assessed by measuring fasting blood glucose, changes in body weight, plasma insulin, homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol, triglycerides, oral glucose tolerance, intraperitoneal insulin tolerance, hepatic glycogen, marker enzymes of carbohydrate metabolism in HFD fed-STZ-induced type 2 diabetic rats. Histology and immunohistochemical analysis of pancreatic islets were also performed. High-performance liquid chromatography (HPLC) analysis of CTme showed the presence of polyphenols such as gallic acid and caffeic acid in the concentrations of 2.46% (W/W) and 0.32% (W/W). CTme significantly reverted the altered biochemical parameters to near normal levels in diabetic rats. Furthermore CTme showed the protective effect on the ß-cells of pancreatic tissues in diabetic rats. These findings indicate that C. tetragonoloba beans have therapeutic potential in HFD fed-STZ-induced hyperglycemia; therefore this can be used in the management of type 2 diabetes.


Assuntos
Cyamopsis/química , Diabetes Mellitus Tipo 2/prevenção & controle , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Glicemia/análise , Cromatografia Líquida de Alta Pressão , Insulina/sangue , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA