Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220035, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633276

RESUMO

Menaquinones (MKs) are electron carriers in bacterial respiratory chains. In Staphylococcus aureus (Sau), MKs are essential for aerobic and anaerobic respiration. As MKs are redox-active, their biosynthesis likely requires tight regulation to prevent disruption of cellular redox balance. We recently found that the Mycobacterium tuberculosis MenD, the first committed enzyme of the MK biosynthesis pathway, is allosterically inhibited by the downstream metabolite 1,4-dihydroxy-2-naphthoic acid (DHNA). To understand if this is a conserved mechanism in phylogenetically distant genera that also use MK, we investigated whether the Sau-MenD is allosterically inhibited by DHNA. Our results show that DHNA binds to and inhibits the SEPHCHC synthase activity of Sau-MenD enzymes. We identified residues in the DHNA binding pocket that are important for catalysis (Arg98, Lys283, Lys309) and inhibition (Arg98, Lys283). Furthermore, we showed that exogenous DHNA inhibits the growth of Sau, an effect that can be rescued by supplementing the growth medium with MK-4. Our results demonstrate that, despite a lack of strict conservation of the DHNA binding pocket between Mtb-MenD and Sau-MenD, feedback inhibition by DHNA is a conserved mechanism in Sau-MenD and hence the Sau MK biosynthesis pathway. These findings may have implications for the development of anti-staphylococcal agents targeting MK biosynthesis. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Assuntos
Naftalenos , Staphylococcus aureus , Vitamina K 2/farmacologia , Vitamina K 2/metabolismo , Staphylococcus aureus/metabolismo , Retroalimentação , Naftalenos/farmacologia
2.
FEMS Microbiol Lett ; 365(6)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29272380

RESUMO

Pseudomonas fragi is a meat and milk spoilage bacterium with high iron requirements; however, mechanisms of iron acquisition remain largely unknown. The aim of this work was to investigate siderophore production as an iron acquisition system for P. fragi. A vibrioferrin siderophore gene cluster was identified in 13 P. fragi, and experiments were conducted with a representative strain of this group (F1801). Chromeazurol S assays showed that P. fragi F1801 produced siderophores under iron starvation at optimum growth and refrigeration temperature. Conversely, supplementation of low iron media with 50 µM FeCl3 repressed transcription of the vibrioferrin genes and siderophore production. Disruption of the siderophore receptor (pvuA) caused polar effects on downstream vibrioferrin genes, resulting in impaired siderophore production of the ΔpvuA mutant. Growth of this mutant was compared to growth of a control strain (Δlip) with wild-type vibrioferrin genes in low iron media supplemented with iron chelators 2,2΄-bipyridyl or apo-transferrin. While 25 µM 2,2΄-bipyridyl caused impaired growth of ΔpvuA, growth of the mutant was completely inhibited by 2.5 µM apo-transferrin, but could be restored by FeCl3 addition. In summary, this work identifies a vibrioferrin-mediated iron acquisition system of P. fragi, which is required for growth of this bacterium under iron starvation.


Assuntos
Citratos/biossíntese , Microbiologia de Alimentos , Pseudomonas fragi/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Ferro/metabolismo , Família Multigênica , Mutação , Filogenia , Pseudomonas fragi/genética , Pirrolidinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA