Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 159: 99-107, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33358940

RESUMO

Atherosclerosis is a non-resolving inflammatory condition that underlies major cardiovascular diseases.Recent clinical trial using an anti-inflammatory drug has showna reduction of cardiovascular mortality, but increased the susceptibility to infections. For this reason, tissue target anti-inflammatory therapies can represent a better option to regress atherosclerotic plaques. Docosahexaenoic acid (DHA) is a natural omega 3 fatty acidcomponentof algae oil and acts asaprecursor of several anti-inflammatory compounds, such the specialized proresolving lipid mediators(SPMs). During the atherosclerosis process, the inflammatory condition of the endothelium leads to the higher expression of adhesion molecules, such as Endothelial Cell Adhesion Molecule Plate 1 (PECAM-1 or CD31), as part of the innate immune response. Thus, the objective of this study was to develop lipid-core nanocapsules with DHA constituting the nucleus and anti-PECAM-1 on their surface and drive this structure to the inflamed endothelium. Nanocapsules were prepared by interfacial deposition of pre-formed polymer method. Zinc-II was added to bind anti-PECAM-1 to the nanocapsule surface by forming an organometallic complex. Swelling experiment showed that the algae oil act as non-solvent for the polymer (weight constant weight for 60 days, p > 0.428) indicating an adequate material to produce kinetically stable lipid-core nanocapsules (LNC). Five formulations were synthesized: Lipid-core nanocapsules containing DHA (LNC-DHA) or containing Medium-chain triglycerides (LNC-MCT), multi-wall nanocapsules containing DHA (MLNC-DHA) or containing MCT (MLNC-MCT) and the surface-functionalized (anti-PECAM-1) metal-complex multi-wall nanocapsules containing DHA (MCMN-DHA-a1). All formulations showed homogeneous macroscopic aspects without aggregation. The mean size of the nanocapsules measured by laser diffraction did not show difference among the samples (p = 0.241). Multi-wall nanocapsules (MLNC) showed a slight increase in the mean diameter and polydispersity index (PDI) measured by DLS, lower pH and an inversion in the zeta-potential (ξP) compared to LNCs. Conjugation test for anti-PECAM-1 showed 94.80% of efficiency. The mean diameter of the formulation had slightly increased from 160 nm (LCN-DHA) and 162 nm (MLNC-DHA) to 164 nm (MCMN-DHA-a1) indicating that the surface functionalization did not induce aggregation of the nanocapsules. Biological assays showed that the MCMN-DHA-a1 were uptaken by the HUVEC cells and did not decrease their viability. The surface-functionalized (anti- PECAM-1) metal-complex multi-wall nanocapsules containing DHA (MCMN-DHA-a1) can be considered adequate for pharmaceutical approaches.


Assuntos
Anti-Inflamatórios/administração & dosagem , Aterosclerose/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Nanocápsulas/química , Molécula-1 de Adesão Celular Endotelial a Plaquetas/antagonistas & inibidores , Combinação de Medicamentos , Composição de Medicamentos/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipídeos/química , Compostos Organometálicos/química , Tamanho da Partícula , Zinco/química
2.
Pharmaceutics ; 12(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187057

RESUMO

Pequi is a Brazilian fruit used in folk medicine for pulmonary diseases treatment, but its oil presents bioavailability limitations. The use of nanocarriers can overcome this limitation. We developed nanoemulsions containing pequi oil (pequi-NE) and evaluated their effects in a lipopolysaccharide (LPS)-induced lung injury model. Free pequi oil or pequi-NE (20 mg/kg) was orally administered to A/J mice 16 and 4 h prior to intranasal LPS exposure, and the analyses were performed 24 h after LPS provocation. The physicochemical results revealed that pequi-NE comprised particles with mean diameter of 174-223 nm, low polydispersity index (0.11 ± 0.01), zeta potential of -7.13 ± 0.08 mV, and pH of 5.83 ± 0.12. In vivo evaluation showed that free pequi oil pretreatment reduced the influx of inflammatory cells into bronchoalveolar fluid (BALF), while pequi-NE completely abolished leukocyte accumulation. Moreover, pequi-NE, but not free pequi oil, reduced myeloperoxidase (MPO), TNF-α, IL-1ß, IL-6, MCP-1, and KC levels. Similar anti-inflammatory effects were observed when LPS-exposed animals were pre-treated with the nanoemulsion containing pequi or oleic acid. These results suggest that the use of nanoemulsions as carriers enhances the anti-inflammatory properties of oleic acid-containing pequi oil. Moreover, pequi's beneficial effect is likely due its high levels of oleic acid.

3.
Food Res Int ; 120: 872-879, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000308

RESUMO

Linseed oil was nanoencapsulated with chia seed mucilage (CSM) as structuring material. Linseed oil nanoparticles (LO-NP) were evaluated regarding particle size distribution, zeta potential, pH, viscosity, encapsulation efficiency, loading capacity, morphology, FT-IR and thermal properties. Furthermore, the nanoparticles were spray-dried, and oxidative stability was evaluated during 28 days under storage at accelerated conditions (40 °C). The bioaccessibility of spray dried nanoparticles (SP LO-NP) was also evaluated after in vitro digestion. Thereafter, SP LO-NP were utilized in the enrichment of orange juice, and physicochemical and sensory evaluation of pure orange juice and orange juice with SP LO-NP were evaluated. Nanoparticles in suspension presented a mean diameter of 356 ±â€¯2.83 nm, zeta potential of -22.75 ±â€¯3.89 mV and encapsulation efficiency of 52%. No significant differences regarding consumer acceptance were observed between pure orange juice and orange juice with SP LO-NP. The results suggest that CSM can be used as structuring material to nanoencapsulate hydrophobic compounds, allowing its solubility in foods with high water content. Furthermore, the SP LO-NP provided a good bioaccessibility to linseed oil after in vitro digestion, which represents an advantage to incorporate the nanoparticles in food.


Assuntos
Citrus sinensis/química , Alimentos Fortificados , Sucos de Frutas e Vegetais , Óleo de Semente do Linho/química , Mucilagem Vegetal/química , Salvia/química , Nanotecnologia , Sementes/química
4.
Biomed Pharmacother ; 111: 1074-1087, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30841421

RESUMO

Annona vepretorum is an endemic species of the Caatinga biome, known in Northeastern Brazil as "araticum" and/or "pinha da Caatinga". In the present study it was evaluated the neuropharmacological potential of the essential oil obtained from the leaves of Annona vepretorum, as well as of the inclusion complexes of oil obtained with cyclodextrin. Thus, were used neuropharmacological tests already consolidated in the literature like open-field, elevated plus maze, rota-rod, tail suspension test, thiopental-induced sleep test, among others. The acute treatment of essential oil (EO) has anxiolytic, sedative, antiepileptic and antidepressant effects. The anxiolytic and anticonvulsant effects seems to be related to the GABAergic system, probably in the receptor subtypes that mediate the effects of the benzodiazepines, to generate anxiolytic activity. The sedative effect seems to be involved with other signaling pathways. The antidepressant effect of EO seems to be related to its action on serotonergic receptors. It was verified that some behavioral parameters were improved with the oil complexed with ß-cyclodextrin, but this effect was not uniform for all the doses and tests used. Further studies are needed in order to use other options for drug delivery systems. Thus, the essential oil of Annona vepretorum is a promising agent with neurobiological activity and a potential target for drug discovery, since the natural products such as medicinal plants have been a source of new therapeutic proposals.


Assuntos
Annona/química , Ansiolíticos/farmacologia , Anticonvulsivantes/farmacologia , Antidepressivos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Óleos Voláteis/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Masculino , Camundongos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas Medicinais/química , Transdução de Sinais/efeitos dos fármacos
5.
Eur J Pharm Sci ; 16(4-5): 305-12, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12208461

RESUMO

The industrial development of polymeric nanoparticle suspensions, as drug delivery systems, is limited due to the problems in maintaining stability of suspensions. In this work, a spray-drying technique was applied to dry nanocapsule and nanosphere suspensions prepared by nanoprecipitation of polyesters using SiO(2) as adjuvant. Powders obtained from nanocapsules presented stable drug recoveries and morphological characteristics after 5 months. For nanocapsules, nanostructures around 200 nm were observed by scanning electron microscopy (SEM) on the surface of microparticles of SiO(2), whereas for the nanosphere formulation, nanostructures with a reduced diameter (60-90 nm) were observed, despite the particle sizes of each original suspension being similar, when measured by photon correlation spectroscopy (PCS). In order to investigate the morphological aspects of nanocapsule and nanosphere powders, several nanosphere formulations were spray-dried using different concentrations of SiO(2) and a comparative study of the different colloidal systems (nanocapsules, nanospheres, nanoemulsion or nanodispersion) was carried out by PCS. SEM analyses showed that nanostructures with reduced diameter are formed independently of the adjuvant concentration. The dynamic properties of these systems allowed to suggest that the structure of the nanosphere particle (polymer, sorbitan monostearate and polysorbate 80) was a polymeric matrix dispersing the sorbitan monostearate which, when submitted to the spray-drying process in the presence of SiO(2), gave nanostructures presenting diameters around 80 nm covering the microparticles due to the release of lipophilic surfactant from the polymeric matrix.


Assuntos
Composição de Medicamentos/métodos , Indometacina/química , Ácido Láctico/química , Poliésteres/química , Polímeros/química , Cápsulas , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Microesferas , Nanotecnologia , Tamanho da Partícula , Dióxido de Silício/química , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA