Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835080

RESUMO

The bioactivity of the versatile biodegradable biopolymer poly(lactic acid) (PLA) can be obtained by combining it with natural or synthetic compounds. This paper deals with the preparation of bioactive formulations involving the melt processing of PLA loaded with a medicinal plant (sage) and an edible oil (coconut oil), together with an organomodifed montmorillonite nanoclay, and an assessment of the resulting structural, surface, morphological, mechanical, and biological properties of the biocomposites. By modulating the components, the prepared biocomposites show flexibility, both antioxidant and antimicrobial activity, as well as a high degree of cytocompatibility, being capable to induce the cell adherence and proliferation on their surface. Overall, the obtained results suggest that the developed PLA-based biocomposites could potentially be used as bioactive materials in medical applications.


Assuntos
Ácido Láctico , Polímeros , Polímeros/química , Óleo de Coco , Ácido Láctico/química , Poliésteres/química
2.
Microorganisms ; 8(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963272

RESUMO

The influence of spore concentration on the ability of a Trichoderma consortium to colonize the Passiflora caerulea phyllosphere was evaluated by determining the effects of foliar treatments with two spore concentrations, in two repeated treatments, on the morphological, physiological, and ultrastructural characteristics, and on the yield and quality of P. caerulea. The studied crop quality features were related to its nutraceutical use: the accumulation of polyphenols and flavonoids, antioxidant activity, and effects on mouse fibroblast L929 cells. The Trichoderma consortium consisted of two strains, T. asperellum T36b and T. harzianum Td50b, and the concentrations used were 106 colony forming units (cfu)/mL and 108 cfu/mL. As a reference treatment, a commercial product that was based on herbs and algal extracts was used. As compared to the negative control, the treatment with the Trichoderma consortium at 108 cfu/mL concentration determines the accumulation of higher level of polyphenols and flavonoids and increased antioxidant activity. This enhancement of P. caerulea quality characteristics after treatment with the higher concentration of Trichoderma consortium was associated with larger leaves, increased number and size of chloroplasts, improved plant physiology characteristics, and an increased yield. The treatment with high concentration of Trichoderma consortium spores promotes phyllosphere colonization and benefits both crop yield and quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA