Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Nutr Biochem ; 127: 109602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373509

RESUMO

This study evaluated the effect of vitamin D3 (VIT D3) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1ß, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D3 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D3 12 µg/kg. Results show that VIT D3 reduced blood glucose, ATP hydrolysis, ADA activity, P2Y12R density (platelets), as well as ATP, ADP, and AMP hydrolysis and ADA activity (synaptosomes). Moreover, VIT D3 increased insulin levels and AMP hydrolysis (platelets) and improved antioxidant defense. Therefore, we suggest that VIT D3 treatment modulates hyperglycemia-induced changes via purinergic enzymes and receptor expression, consequently attenuating insulin homeostasis dysregulation in the diabetic state.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insulinas , Ratos , Masculino , Animais , Ratos Wistar , Colecalciferol/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Vitaminas , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Food Chem Toxicol ; 123: 298-313, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30291944

RESUMO

Coffee is a drink prepared from roasted coffee beans and is lauded for its aroma and flavour. It is the third most popular beverage in the world. This beverage is known by its stimulant effect associated with the presence of methylxanthines. Caffeine, a purine-like molecule (1,3,7 trymetylxantine), is the most important bioactive compound in coffee, among others such as chlorogenic acid (CGA), diterpenes, and trigonelline. CGA is a phenolic acid with biological properties as antioxidant, anti-inflammatory, neuroprotector, hypolipidemic, and hypoglicemic. Purinergic system plays a key role inneuromodulation and homeostasis. Extracellular ATP, other nucleotides and adenosine are signalling molecules that act through their specific receptors, namely purinoceptors, P1 for nucleosides and P2 for nucleotides. They regulate many pathological processes, since adenosine, for instance, can limit the damage caused by ATP in the excitotoxicity from the neuronal cells. The primary purpose of this review is to discuss the effects of coffee, caffeine, and CGA on the purinergic system. This review focuses on the relationship/interplay between coffee, caffeine, CGA, and adenosine, and their effects on ectonucleotidases activities as well as on the modulation of P1 and P2 receptors from central nervous system and also in peripheral tissue.


Assuntos
Cafeína/metabolismo , Ácido Clorogênico/metabolismo , Extratos Vegetais/metabolismo , Purinas/metabolismo , Animais , Cafeína/química , Ácido Clorogênico/química , Coffea/química , Café/química , Café/metabolismo , Humanos , Extratos Vegetais/química , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais
3.
Biomed Pharmacother ; 108: 1731-1738, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372876

RESUMO

This study evaluated the effects of caffeine in combination with high-intensity interval training (HIIT) on sensitivity to glucocorticoids and proliferation of lymphocytes, IL-6 and IL-10 levels and NTPDase, adenosine deaminase (ADA) and acetylcholinesterase (AChE) activity in rat lymphocytes. The animals were divided into groups: control, caffeine 4 mg/kg, caffeine 8 mg/kg, HIIT, HIIT plus caffeine 4 mg/kg and HIIT plus caffeine 8 mg/kg. The rats were trained three times a week for 6 weeks for a total workload 23% of body weight at the end of the experiment. Caffeine was administered orally 30 min before the training session. When lymphocytes were stimulated with phytohaemagglutinin no changes were observed in proliferative response between trained and sedentary animals; however, when caffeine was associated with HIIT an increase in T lymphocyte proliferation and in the sensitivity of lymphocytes to glucocorticoids occurred. ATP and ADP hydrolysis was decreased in the lymphocytes of the animals only trained and caffeine treatment prevented alterations in ATP hydrolysis. HIIT caused an increase in the ADA and AChE activity in lymphocytes and this effect was more pronounced in rats trained and supplemented with caffeine. The level of IL-6 was increased while the level of IL-10 was decreased in trained animals (HIIT) and caffeine was capable of preventing this exercise effect. Our findings suggest that caffeine ingestion attenuates, as least in part, the immune and inflammatory alterations following a prolonged HIIT protocol.


Assuntos
Cafeína/farmacologia , Citocinas/metabolismo , Linfócitos/metabolismo , Condicionamento Físico Animal , Receptores Colinérgicos/metabolismo , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Acetilcolinesterase/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/sangue , Glucocorticoides/farmacologia , Hidrólise , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Masculino , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
4.
Nutr Res ; 55: 45-56, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29914627

RESUMO

Quercetin is reported to exert a plethora of health benefits through many different mechanisms of action. This versatility and presence in the human diet has attracted the attention of the scientific community, resulting in a huge output of in vitro and in vivo (preclinical) studies. Therefore, we hypothesized that quercetin can protect Na+,K+-ATPase activity in the central nervous system, reestablish the peripheral cholinesterases activities, and reduce oxidative stress during demyelination events in rats. In line with this expectation, our study aims to find out how quercetin acts on the Na+,K+-ATPase activity in the central nervous system, peripheral cholinesterases, and stress oxidative markers in an experimental model of demyelinating disease. Wistar rats were divided into 4 groups: vehicle, quercetin, ethidium bromide (EB), and EB plus quercetin groups. The animals were treated once a day with vehicle (ethanol 20%) or quercetin 50 mg/kg for 7 (demyelination phase, by gavage) or 21 days (remyelination phase) after EB (0.1%, 10 µL) injection (intrapontine).The encephalon was removed, and the pons, hypothalamus, cerebral cortex, hippocampus, striatum, and cerebellum were dissected to verify the Na+,K+-ATPase activity. Our results showed that quercetin protected against reduction in Na+,K+-ATPase in the pons and cerebellum in the demyelination phase, and it increased the activity of this enzyme in the remyelination phase. During the demyelination, quercetin promoted the increase in acetylcholinesterase activity in whole blood and lymphocytes induced by EB, and it reduced the increase in acetylcholinesterase activity in lymphocytes in the remyelination phase. On day 7, EB increased the superoxide dismutase and decreased catalase activities, as well as increased the thiobarbituric acid-reactive substance levels. Taken together, these results indicated that quercetin regulates the Na+,K+-ATPase activity, affects the alterations of redox state, and participates in the reestablishment of peripheral cholinergic activity during demyelinating and remyelination events.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Doenças Desmielinizantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Remielinização/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Linfócitos/metabolismo , Masculino , Oxirredução , Extratos Vegetais/farmacologia , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico
5.
Mol Nutr Food Res ; 62(16): e1800050, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29888863

RESUMO

SCOPE: Beneficial effects produced by polyphenolic compounds are used in the treatment of various diseases, including diabetes. Thus it is relevant to investigate the protective effect of lingonberry extract (LB) on the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (5'-NT), and adenosine deaminase (ADA); the density of A1, A2A, and P2×7 receptors; production of reactive species (RS); and the levels of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex of streptozotocin-induced diabetic rats. METHODS AND RESULTS: Animals were divided into five groups (n = 10): control/saline; control/LB 50 mg kg-1 ; diabetic/saline; diabetic/LB 25 mg kg-1 ; and diabetic/LB 50 mg kg-1 ; and treated for 30 days. Our results demonstrate that the treatment with LB increased NTPDase activity in the diabetic/LB 50 group compared to diabetic/saline group. Western blot analysis showed that LB restored the density of purinergic receptors to the approximate values of the control/saline group. An increase in the levels of RS and TBARS was observed in the diabetic/saline group compared with the control/saline group, and treatment with LB can prevent this increase. CONCLUSION: This study showed that LB could reverse the modifications found in the diabetic state, suggesting that lingonberry may be a coadjuvant in the treatment of diabetes.


Assuntos
Aminoidrolases/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptores Purinérgicos/efeitos dos fármacos , Vaccinium vitis-Idaea , 5'-Nucleotidase/metabolismo , Animais , Glicemia/análise , Córtex Cerebral/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratos , Ratos Wistar , Estreptozocina
6.
Biomed Pharmacother ; 84: 1194-1201, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27788477

RESUMO

BACKGROUND: This study investigated the effects of Padauk leaf on brain malondialdehyde (MDA) content, acetylcholinesterase (AChE) activities, ectonucleotidases and adenosine deaminase (ADA) activities in the platelet of high fat diet and streptozotocin (STZ)-induced diabetic rats. METHODS: The animals were divided into six groups (n=7): normal control rats; diabetic rats+high fat diet (HFD); diabetic rats+HFD+Metformin; diabetic rats+HFD+acarbose; diabetic rats+HFD+10% Padauk leaf; normal rats+basal diet+10% Padauk leaf. After 30days of experiment comprising of acclimatization, dietary manipulation, pre-treatment with STZ and supplementation with Padauk leaf, the animals were sacrificed and the rats' brain and blood were collected for subsequent analysis. RESULTS: The results demonstrated that the elevated MDA content and AChE activity in the diabetic rats were significantly reduced when compared with the control rats. Furthermore, the increased NTPDases, 5'-nucleotidase and ADA activities in the diabetic rats were significantly reduced when compared with the control rats. CONCLUSION: This study demonstrated that Padauk leaf exhibited modulatory effects on purinergic and cholinergic enzymes involved in the prevention of platelet abnormality and consequent vascular complications in diabetic state.


Assuntos
Plaquetas/patologia , Encéfalo/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Suplementos Nutricionais , Extratos Vegetais/sangue , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Pterocarpus/química , 5'-Nucleotidase/metabolismo , Acetilcolinesterase/metabolismo , Adenosina Desaminase/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Fenóis/análise , Extratos Vegetais/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina
7.
J Nutr Biochem ; 38: 145-153, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27736734

RESUMO

We evaluated the effect of chlorogenic acid (CGA), caffeine (CA) and coffee (CF) on components of the purinergic system from the cerebral cortex and platelets of streptozotocin-induced diabetic rats. Animals were divided into eight groups: control animals treated with (I) water (WT), (II) CGA (5 mg/kg), (III) CA (15 mg/kg) and (IV) CF (0.5 g/kg), and diabetic animals treated with (V) WT, (VI) CGA (5 mg/kg), (VII) CA (15 mg/kg) and (VIII) CF (0.5 g/kg). Our results showed an increase (173%) in adenosine monophosphate (AMP) hydrolysis in the cerebral cortex of diabetic rats. In addition, CF treatment increased adenosine diphosphate (ADP) and AMP hydrolysis in group VIII synaptosomes. Platelets showed an increase in ectonucleotidase activity in group V, and all treatments reduced the increase in adenosine triphosphate and ADP hydrolysis. Furthermore, there was an increase in platelet aggregation of 72% in the diabetic rats, and CGA and CF treatment reduced platelet aggregation by nearly 60% when compared to diabetic rats. In this context, we can suggest that CGA and CF treatment should be considered a therapeutic and scientific target to be investigated in diseases associated with hyperglycemia.


Assuntos
Cafeína/uso terapêutico , Córtex Cerebral/metabolismo , Ácido Clorogênico/uso terapêutico , Diabetes Mellitus Experimental/dietoterapia , Neuropatias Diabéticas/prevenção & controle , Suplementos Nutricionais , Fármacos Neuroprotetores/uso terapêutico , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Nucleotídeos de Adenina/metabolismo , Animais , Plaquetas/enzimologia , Plaquetas/metabolismo , Córtex Cerebral/enzimologia , Café , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidrólise , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Neuroproteção , Agregação Plaquetária , Purinérgicos/uso terapêutico , Ratos Wistar , Sinaptossomos/enzimologia , Sinaptossomos/metabolismo
8.
J. physiol. biochem ; 71(4): 743-751, dic. 2015.
Artigo em Inglês | IBECS | ID: ibc-145726

RESUMO

In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models


Assuntos
Animais , Ratos , Diabetes Mellitus/tratamento farmacológico , Estresse Oxidativo , Antioxidantes/farmacocinética , Extratos Vegetais/farmacocinética , Biomarcadores/análise , Substâncias Protetoras/farmacocinética , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus Experimental/fisiopatologia
9.
J Physiol Biochem ; 71(4): 743-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26452500

RESUMO

In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models.


Assuntos
Antioxidantes/farmacologia , Cinamatos/farmacologia , Depsídeos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Rim/metabolismo , Fígado/metabolismo , Animais , Antioxidantes/uso terapêutico , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Glicemia , Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Avaliação Pré-Clínica de Medicamentos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo , Ratos Wistar , Estreptozocina , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Ácido Rosmarínico
10.
Cell Biochem Funct ; 32(3): 287-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24301255

RESUMO

We investigated the efficacy of rosmarinic acid (RA) in preventing lipid peroxidation and increased activity of acetylcholinesterase (AChE) in the brain of streptozotocin-induced diabetic rats. The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol and diabetic/RA 10 mg/kg. After 21 days of treatment with RA, the cerebral structures (striatum, cortex and hippocampus) were removed for experimental assays. The results demonstrated that the treatment with RA (10 mg/kg) significantly reduced the level of lipid peroxidation in hippocampus (28%), cortex (38%) and striatum (47%) of diabetic rats when compared with the control. In addition, it was found that hyperglycaemia caused significant increased in the activity of AChE in hippocampus (58%), cortex (46%) and striatum (30%) in comparison with the control. On the other hand, the treatment with RA reversed this effect to the level of control after 3 weeks. In conclusion, the present findings showed that treatment with RA prevents the lipid peroxidation and consequently the increase in AChE activity in diabetic rats, demonstrating that this compound can modulate cholinergic neurotransmission and prevent damage oxidative in brain in the diabetic state. Thus, we can suggest that RA could be a promising compound in the complementary therapy in diabetes.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Cinamatos/farmacologia , Depsídeos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Masculino , Ratos , Ratos Wistar , Estreptozocina , Ácido Rosmarínico
11.
Mol Cell Biochem ; 388(1-2): 277-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24370728

RESUMO

Diabetes mellitus (DM) is associated with brain alterations that may contribute to cognitive dysfunctions. Chlorogenic acid (CGA) and caffeine (CA), abundant in coffee (CF), are natural compounds that have showed important actions in the brain. The present study aimed to evaluate the effect of CGA, CA, and CF on acetylcholinesterase (AChE), Na(+), K(+)-ATPase, aminolevulinate dehydratase (δ-ALA-D) activities and TBARS levels from cerebral cortex, as well as memory and anxiety in streptozotocin-induced diabetic rats. Animals were divided into eight groups (n = 5-10): control; control/CGA 5 mg/kg; control/CA 15 mg/kg; control/CF 0.5 g/kg; diabetic; diabetic/CGA 5 mg/kg; diabetic/CA 15 mg/kg; and diabetic/CF 0.5 g/kg. Our results demonstrated an increase in AChE activity and TBARS levels in cerebral cortex, while δ-ALA-D and Na(+), K(+)-ATPase activities were decreased in the diabetic rats when compared to control water group. Furthermore, a memory deficit and an increase in anxiety in diabetic rats were observed. The treatment with CGA and CA prevented the increase in AChE activity in diabetic rats when compared to the diabetic water group. CGA, CA, and CF intake partially prevented cerebral δ-ALA-D and Na(+), K(+)-ATPase activity decrease due to diabetes. Moreover, CGA prevented diabetes-induced TBARS production, improved memory, and decreased anxiety. In conclusion, among the compounds studied CGA proved to be a compound which acts better in the prevention of brain disorders promoted by DM.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cafeína/farmacologia , Ácido Clorogênico/farmacologia , Café , Diabetes Mellitus Experimental/tratamento farmacológico , Acetilcolinesterase/biossíntese , Animais , Ansiedade/tratamento farmacológico , Peso Corporal/efeitos dos fármacos , Córtex Cerebral/metabolismo , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Sintase do Porfobilinogênio/biossíntese , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/biossíntese , Estreptozocina , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
12.
Cell Biochem Biophys ; 65(2): 129-43, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22956389

RESUMO

This study investigated the ex vivo effects of the moderate red wine (RW) and grape juice (GJ) consumption, and the in vitro effects of the resveratrol, caffeic acid, gallic acid, quercetin, and rutin on NTPDase (nucleoside triphosphate diphosphohydrolase), ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP), 5'-nucleotidase, and adenosine deaminase (ADA) activities in platelets and platelet aggregation from streptozotocin-induced diabetic rats. The animals were divided into six groups (n = 10): control/saline, control/GJ, control/RW, diabetic/saline, diabetic/GJ, and diabetic/RW. RW and GJ were administered for 45 days; after this period, the blood was collected for experimental determinations. Results showed that NTPDase, E-NPP, 5'-nucleotidase, and ADA activities as well as platelet aggregation were increased in the diabetic/saline group compared to the control/saline group. Treatment with RW and GJ increased ectonucleotidases activities and prevented the increase in the ADA activity in the diabetic/GJ and diabetic/RW groups. Platelet aggregation was also decreased by the treatment with RW and GJ in the diabetic/GJ and diabetic/RW groups. In the in vitro tests, resveratrol, caffeic acid, and gallic acid increased ATP, ADP, and AMP hydrolysis, while quercetin and rutin decreased the hydrolysis of these nucleotides in platelets of diabetic rats. The ADA activity and platelet aggregation were reduced in platelets of diabetic rats in the presence of all polyphenols tested in vitro. These findings suggest that RW, GJ, and all polyphenols tested were able to modulate the ectoenzymes activities. Moreover, a decrease in the platelet aggregation was observed and it could contribute to the prevention of platelet abnormality, and consequently vascular complications in diabetic state.


Assuntos
Nucleotídeos de Adenina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Preparações de Plantas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Vitis/química , Vinho , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Bebidas , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Plaquetas/metabolismo , Ácidos Cafeicos/farmacologia , Diabetes Mellitus Experimental/sangue , Relação Dose-Resposta a Droga , Hidrólise/efeitos dos fármacos , Masculino , Pirofosfatases/metabolismo , Quercetina/farmacologia , Ratos , Ratos Wistar , Resveratrol , Rutina/farmacologia , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA