RESUMO
Insufficient vascularization is a main barrier to creating engineered bone grafts for treating large and ischemic defects. Modular tissue engineering approaches have promise in this application because of the ability to combine tissue types and to localize microenvironmental cues to drive desired cell function. In direct bone formation approaches, it is challenging to maintain sustained osteogenic activity, since vasculogenic cues can inhibit tissue mineralization. This study harnessed the physiological process of endochondral ossification to create multiphase tissues that allowed concomitant mineralization and vessel formation. Mesenchymal stromal cells in pellet culture were differentiated toward a cartilage phenotype, followed by induction to chondrocyte hypertrophy. Hypertrophic pellets exhibited increased alkaline phosphatase activity, calcium deposition, and osteogenic gene expression relative to chondrogenic pellets. In addition, hypertrophic pellets secreted and sequestered angiogenic factors, and supported new blood vessel formation by co-cultured endothelial cells and undifferentiated stromal cells. Multiphase constructs created by combining hypertrophic pellets and vascularizing microtissues and maintained in unsupplemented basal culture medium were shown to support robust vascularization and sustained tissue mineralization. These results demonstrate a new in vitro strategy to produce multiphase engineered constructs that concomitantly support the generation of mineralize and vascularized tissue in the absence of exogenous osteogenic or vasculogenic medium supplements.
RESUMO
PURPOSE: Bone marrow-derived mesenchymal stem cells (MSC) can differentiate osteogenic lineages, but their tissue regeneration ability is inconsistent. The bone marrow mononuclear cell (BMMC) fraction of adult bone marrow contains a variety of progenitor cells that may potentiate tissue regeneration. This study examined the utility of BMMC, both alone and in combination with purified MSC, as a cell source for bone regeneration. METHODS: Fresh BMMC, culture-expanded MSC, and a combination of BMMC and MSC were encapsulated in collagen-chitosan hydrogel microbeads for pre-culture and minimally invasive delivery. Microbeads were cultured in growth medium for 3 days, and then in either growth or osteogenic medium for 17 days prior to subcutaneous injection in the rat dorsum. RESULTS: MSC remained viable in microbeads over 17 days in pre-culture, while some of the BMMC fraction were nonviable. After 5 weeks of implantation, microCT and histology showed that supplementation of BMMC with MSC produced a strong synergistic effect on the volume of ectopic bone formation, compared to either cell source alone. Microbeads containing only fresh BMMC or only cultured MSC maintained in osteogenic medium resulted in more bone formation than their counterparts cultured in growth medium. Histological staining showed evidence of residual microbead matrix in undifferentiated samples and indications of more advanced tissue remodeling in differentiated samples. CONCLUSIONS: These data suggest that components of the BMMC fraction can act synergistically with predifferentiated MSC to potentiate ectopic bone formation. The microbead system may have utility in delivering desired cell populations in bone regeneration applications.
Assuntos
Células da Medula Óssea/citologia , Separação Celular/métodos , Quitosana/farmacologia , Coristoma/patologia , Colágeno/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Animais , Densidade Óssea/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Coristoma/diagnóstico por imagem , Implantes Experimentais , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Microesferas , Tamanho do Órgão/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos Endogâmicos F344 , Microtomografia por Raio-XRESUMO
Microencapsulation and delivery of stem cells in biomaterials is a promising approach to repairing damaged tissue in a minimally invasive manner. An appropriate biomaterial niche can protect the embedded cells from the challenging environment in the host tissue, while also directing stem cell differentiation toward the desired lineage. In this study, adult human mesenchymal stem cells (MSC) were embedded in hydrogel microbeads consisting of chitosan and type I collagen using an emulsification process. Glyoxal and ß-glycerophosphate were used as chemical and physical crosslinkers to initiate copolymerization of the matrix materials. The average size and size distribution of the microbeads could be varied by controlling the emulsification conditions. Spheroidal microbeads ranging in diameter from 82 ± 19 to 290 ± 78 µm were produced. Viability staining showed that MSC survived the encapsulation process (>90% viability) and spread inside the matrix over a period of 9 days in culture. Induced osteogenic differentiation using medium supplements showed that MSC increased gene expression of osterix and osteocalcin over time in culture, and also deposited calcium mineral. Bone sialoprotein and type I collagen gene expression were not affected. Delivery of microbeads through standard needles at practically relevant flow rates did not adversely affect cell viability, and microbeads could also be easily molded into prescribed geometries for delivery. Such protein-based microbeads may have utility in orthopedic tissue regeneration by allowing minimally invasive delivery of progenitor cells in microenvironments that are both protective and instructive.
Assuntos
Osso e Ossos/patologia , Quitosana/farmacologia , Colágeno/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Microesferas , Cicatrização/efeitos dos fármacos , Adulto , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Animais , Osso e Ossos/efeitos dos fármacos , Cálcio/metabolismo , Bovinos , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Injeções , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Tamanho da PartículaRESUMO
Modular tissue engineering applies biomaterials-based approaches to create discrete cell-seeded microenvironments, which can be further assembled into larger constructs for the repair of injured tissues. In the current study, we embedded human bone marrow-derived mesenchymal stem cells (MSC) and human adipose-derived stem cells (ASC) in collagen/fibrin (COL/FIB) and collagen/fibrin/hydroxyapatite (COL/FIB/HA) microbeads, and evaluated their suitability for bone tissue engineering applications. Microbeads were fabricated using a water-in-oil emulsification process, resulting in an average microbead diameter of approximately 130 ± 25 µm. Microbeads supported both cell viability and cell spreading of MSC and ASC over 7 days in culture. The embedded cells also began to remodel and compact the microbead matrix as demonstrated by confocal reflectance microscopy imaging. After two weeks of culture in media containing osteogenic supplements, both MSC and ASC deposited calcium mineral in COL/FIB microbeads, but not in COL/FIB/HA microbeads. There were no significant differences between MSC and ASC in any of the assays examined, suggesting that either cell type may be an appropriate cell source for orthopedic applications. This study has implications in the creation of defined microenvironments for bone repair, and in developing a modular approach for delivery of pre-differentiated cells.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Cerâmica/farmacologia , Colágeno/farmacologia , Congressos como Assunto , Fibrina/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Tecido Adiposo/citologia , Análise de Variância , Animais , Materiais Biocompatíveis/farmacologia , Células da Medula Óssea/citologia , Boston , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal , Microesferas , Tamanho da PartículaRESUMO
As tissue engineering products move toward the clinic, nondestructive methods to monitor their development and ensure quality are needed. In this study, high-resolution spectral ultrasound imaging (SUSI) was used to noninvasively characterize mineral content in collagen hydrogels. SUSI was used to generate three-dimensional (3D) grayscale (GS) images of construct morphology with submillimeter resolution. Spectral analysis of the backscattered radio frequency (RF) ultrasound signals was used to determine the midband fit (MBF) and slope of the linearized RF spectrum. These parameters are operator and instrument independent, and were used to characterize the spatial distribution of mineral in constructs supplemented with hydroxyapatite particles. GS and MBF correlated closely with mineral content, while slope was not dependent on concentration. SUSI also was used to monitor mineralization of collagen constructs by immersion in simulated body fluid (SBF) over 21 days. The construct surface was mineralized before the interior, and there was a dose-dependent effect of SBF concentration on degree of mineralization and deposited particle size. MBF density was closely correlated with the amount of calcium deposited. These data demonstrate that SUSI has utility as a noninvasive imaging method for quantitative analysis of mineralization in 3D protein constructs. Such techniques may assist the development of engineered orthopedic tissues.
Assuntos
Colágeno/química , Hidrogéis , Ultrassom , Líquidos Corporais , Cálcio/químicaRESUMO
Induced biomineralization of materials has been employed as a strategy to increase integration with host tissue, and more recently as a method to control cell function in tissue engineering. However, mineralization is typically performed in the absence of cells, since hypertonic solutions that lack the nutrients and culture components required for the maintenance of cell viability are often used. In the present study, we exposed fibroblast-seeded three-dimensional collagen-chitosan hydrogels to a defined culture medium modified to have specific concentrations of ions involved in biomineralization. The modified medium caused a significant increase in calcium deposition in collagen-chitosan gels, relative to constructs incubated in a standard medium, though serum supplementation attenuated mineral deposition. Collagen-chitosan constructs became opaque over 3 days of mineralization in modified Dulbecco's modified Eagle medium (DMEM), in contrast to translucent control gels incubated in standard DMEM. Histological staining confirmed increased levels of mineral in the treated constructs. Rheological characterization showed that both the storage and loss moduli increased significantly in mineralized materials. Mineralization of fibroblast-seeded constructs resulted in decreased cell viability and proliferation rate over 3 days of incubation in modified medium, but the cell population remained over 75% viable and regained its proliferative potential after rescue in standard culture medium. The ability to mineralize protein matrices in the presence of cells could be useful in creating mechanically stable tissue constructs, as well as to study the effects of the tissue microenvironment on cell function.
Assuntos
Quitosana/farmacologia , Colágeno/farmacologia , Meios de Cultura/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Hidrogéis/farmacologia , Minerais/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Fibroblastos/metabolismo , Humanos , Íons , Microscopia Confocal , Soro/metabolismoRESUMO
Chitosan and collagen type I are naturally derived materials used as cell carriers because of their ability to mimic the extracellular environment and direct cell function. In this study beta-glycerophosphate (beta-GP), an osteogenic medium supplement and a weak base, was used to simultaneously initiate gelation of pure chitosan, pure collagen, and chitosan-collagen composite materials at physiological pH and temperature. Adult human bone marrow-derived stem cells (hBMSC) encapsulated in such hydrogels at chitosan/collagen ratios of 100/0, 65/35, 25/75, and 0/100 wt% exhibited high viability at day 1 after encapsulation, but DNA content dropped by about half over 12 days in pure chitosan materials while it increased twofold in materials containing collagen. Collagen-containing materials compacted more strongly and were significantly stiffer than pure chitosan gels. In monolayer culture, exposure of hBMSC to beta-GP resulted in decreased cell metabolic activity that varied with concentration and exposure time, but washing effectively removed excess beta-GP from hydrogels. The presence of chitosan in materials resulted in higher expression of osterix and bone sialoprotein genes in medium with and without osteogenic supplements. Chitosan also increased alkaline phosphatase activity and calcium deposition in osteogenic medium. Chitosan-collagen composite materials have potential as matrices for cell encapsulation and delivery, or as in situ gel-forming materials for tissue repair.