Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 1): 89-102, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985426

RESUMO

Portland cement based grouts used for radioactive waste immobilization contain high replacement levels of supplementary cementitious materials, including blast-furnace slag and fly ash. The minerals formed upon hydration of these cements may have capacity for binding actinide elements present in radioactive waste. In this work, the minerals ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and hydrotalcite (Mg6Al2(OH)16CO3·4H2O) were selected to investigate the importance of minor cement hydrate phases in sequestering and immobilizing UVI from radioactive waste streams. U LIII-edge X-ray absorption spectroscopy (XAS) was used to probe the UVI coordination environment in contact with these minerals. For the first time, solid-state 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was applied to probe the Al coordination environment in these UVI-contacted minerals and make inferences on the UVI coordination, in conjunction with the X-ray spectroscopy analyses. The U LIII-edge XAS analysis of the UVI-contacted ettringite phases found them to be similar (>∼70%) to the uranyl oxyhydroxides present in a mixed becquerelite/metaschoepite mineral. Fitting of the EXAFS region, in combination with 27Al NMR analysis, indicated that a disordered Ca- or Al-bearing UVI secondary phase also formed. For the UVI-contacted hydrotalcite phases, the XAS and 27Al NMR data were interpreted as being similar to uranyl carbonate, that was likely Mg-containing.

2.
Environ Sci Process Impacts ; 22(7): 1577-1585, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32632425

RESUMO

An environmentally aged radioactive particle of UFeO4 recovered from soil contaminated with munitions depleted uranium (DU) was characterised by microbeam synchrotron X-ray analysis. Imaging of uranium speciation by spatially resolved X-ray diffraction (µ-XRD) and X-ray absorption spectroscopy (µ-XAS) was used to localise UFeO4 in the particle, which was coincident with a distribution of U(v). The U oxidation state was confirmed using X-ray Absorption Near Edge Structure (µ-XANES) spectroscopy as +4.9 ± 0.15. Le-Bail fitting of the particle powder XRD pattern confirmed the presence of UFeO4 and a minor alteration product identified as chernikovite (H3O)(UO2)(PO4)·3H2O. Refined unit cell parameters for UFeO4 were in good agreement with previously published values. Uranium-oxygen interatomic distances in the first co-ordination sphere were determined by fitting of Extended X-ray Absorption Fine Structure (µ-EXAFS) spectroscopy. The average first shell U-O distance was 2.148 ± 0.012 Å, corresponding to a U valence of +4.96 ± 0.13 using bond valence sum analysis. Using bond distances from the published structure of UFeO4, U and Fe bond valence sums were calculated as +5.00 and +2.83 respectively, supporting the spectroscopic analysis and confirming the presence of a U(v)/Fe(iii) pair. Overall this investigation provides important evidence for the stability of U(v) ternary oxides, in oxic, variably moist surface environment conditions for at least 25 years.


Assuntos
Poluentes Radioativos do Solo , Urânio , Microanálise por Sonda Eletrônica , Compostos Férricos , Óxidos , Espectroscopia por Absorção de Raios X
3.
Environ Sci Technol ; 48(3): 1467-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24451034

RESUMO

Use of depleted uranium (DU) munitions has resulted in contamination of the near-surface environment with penetrator residues. Uncertainty in the long-term environmental fate of particles produced by impact of DU penetrators with hard targets is a specific concern. In this study DU particles produced in this way and exposed to the surface terrestrial environment for longer than 30 years at a U.K. firing range were characterized using synchrotron X-ray chemical imaging. Two sites were sampled: a surface soil and a disposal area for DU-contaminated wood, and the U speciation was different between the two areas. Surface soil particles showed little extent of alteration, with U speciated as oxides U3O7 and U3O8. Uranium oxidation state and crystalline phase mapping revealed these oxides occur as separate particles, reflecting heterogeneous formation conditions. Particles recovered from the disposal area were substantially weathered, and U(VI) phosphate phases such as meta-ankoleite (K(UO2)(PO4) · 3H2O) were dominant. Chemical imaging revealed domains of contrasting U oxidation state linked to the presence of both U3O7 and meta-ankoleite, indicating growth of a particle alteration layer. This study demonstrates that substantial alteration of DU residues can occur, which directly influences the health and environmental hazards posed by this contamination.


Assuntos
Armas Nucleares , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Compostos de Urânio/análise , Urânio/análise , Microanálise por Sonda Eletrônica , Humanos , Microscopia Eletrônica de Varredura , Oxirredução , Óxidos/análise , Solo/química , Poluentes Radioativos do Solo/química , Espectrometria por Raios X , Síncrotrons , Reino Unido , Urânio/química , Compostos de Urânio/química
4.
J Hazard Mater ; 263 Pt 2: 382-90, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23998894

RESUMO

Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.


Assuntos
Bicarbonatos/química , Recuperação e Remediação Ambiental/métodos , Poluentes Radioativos do Solo/análise , Urânio/química , Autorradiografia , Ácido Cítrico/química , Monitoramento Ambiental , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Óxidos/química , Tamanho da Partícula , Solo , Espectroscopia por Absorção de Raios X , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA