RESUMO
Halophyte plants are salt-tolerant and are acclimated for growth in saline soils such as along coastal areas. Among the halophytes, the Salicornia species have been used as both folk medicine and functional food for many years due to their high levels of bioactive compounds with supposed anti-inflammatory and antioxidative effects. However, the properties of Salicornia bioactive extracts on pain and itching still remain unclear. In this study, 30 healthy volunteers were randomized to treatments with 10% Salicornia-based cream or placebo cream for 24 or 48 h. On day 0, and 24 or 48 h post cream application, cold/heat detection and pain thresholds, mechanical pain thresholds and sensitivity, trans-epidermal water loss, histamine- and cowhage-evoked itch, and micro-vascular reactivity (neurogenic inflammation) were assessed to evaluate the analgesic, anti-pruritogenic and vasomotor effects. Skin permeability was reduced in the Salicornia-treated area for 48 h compared with 24 h application (p-value < 0.05). After 48 h of application, a decrease in mechanical-evoked itching (hyperkinesis) compared with 24 h treatment (p-value < 0.05) and increased warm detection and heat pain thresholds (p-value < 0.05) was found. Histamine-induced neurogenic inflammation showed a significant reduction in the cream-treated areas after 48 h compared with 24 h (p-value < 0.05). The results of this study indicate the overall inhibitory effect of Salicornia on hyperkinesis (mechanically evoked itch), the analgesic effect on thermal sensation, and modulation of the skin barrier architecture. Further studies are needed for the assessment of the long-term effects.
RESUMO
The pharmacological activities in bioactive plant extracts play an increasing role in sustainable resources for valorization and biomedical applications. Bioactive phytochemicals, including natural compounds, secondary metabolites and their derivatives, have attracted significant attention for use in both medicinal products and cosmetic products. Our review highlights the pharmacological mode-of-action and current biomedical applications of key bioactive compounds applied as anti-inflammatory, bactericidal with antibiotics effects, and pain relief purposes in controlled clinical studies or preclinical studies. In this systematic review, the availability of bioactive compounds from several salt-tolerant plant species, mainly focusing on the three promising species Aster tripolium, Crithmum maritimum and Salicornia europaea, are summarized and discussed. All three of them have been widely used in natural folk medicines and are now in the focus for future nutraceutical and pharmacological applications.
Assuntos
Analgésicos/farmacologia , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Plantas Tolerantes a Sal/química , HumanosRESUMO
Chronic inflammatory diseases (CIDs), including Crohn's disease and ulcerative colitis (inflammatory bowel diseases, IBD), rheumatoid arthritis, psoriasis, psoriatic arthritis, spondyloarthritides, hidradenitis suppurativa, and immune-mediated uveitis, are treated with biologics targeting the pro-inflammatory molecule tumour necrosis factor-α (TNF) (i.e., TNF inhibitors). Approximately one-third of the patients do not respond to the treatment. Genetics and lifestyle may affect the treatment results. The aims of this multidisciplinary collaboration are to identify (1) molecular signatures of prognostic value to help tailor treatment decisions to an individual likely to initiate TNF inhibitor therapy, followed by (2) lifestyle factors that support achievement of optimised treatment outcome. This report describes the establishment of a cohort that aims to obtain this information. Clinical data including lifestyle and treatment response and biological specimens (blood, faeces, urine, and, in IBD patients, intestinal biopsies) are sampled prior to and while on TNF inhibitor therapy. Both hypothesis-driven and data-driven analyses will be performed according to pre-specified protocols including pathway analyses resulting from candidate gene expression analyses and global approaches (e.g., metabolomics, metagenomics, proteomics). The final purpose is to improve the lives of patients suffering from CIDs, by providing tools facilitating treatment selection and dietary recommendations likely to improve the clinical outcome.
Assuntos
Doenças Inflamatórias Intestinais/dietoterapia , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Estilo de Vida , Medicina de Precisão , Biomarcadores/sangue , Índice de Massa Corporal , Dinamarca , Dieta , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Exercício Físico , Ácidos Graxos Insaturados/administração & dosagem , Feminino , Seguimentos , Interação Gene-Ambiente , Humanos , Mucosa Intestinal/metabolismo , Masculino , Carne , Micronutrientes/administração & dosagem , Estudos Prospectivos , Fumar/terapia , Fator de Necrose Tumoral alfa/antagonistas & inibidoresRESUMO
Potato tuber storage proteins were obtained from vacuoles isolated from field-grown starch potato tubers cv. Kuras. Vacuole sap proteins fractionated by gel filtration were studied by mass spectrometric analyses of trypsin and chymotrypsin digestions. The tuber vacuole appears to be a typical protein storage vacuole absent of proteolytic and glycolytic enzymes. The major soluble storage proteins included 28 Kunitz protease inhibitors, nine protease inhibitors 1, eight protease inhibitors 2, two carboxypeptidase inhibitors, eight patatins and five lipoxygenases (lox), which all showed cultivar-specific sequence variations. These proteins, except for lox, have typical endoplasmic reticulum (ER) signal peptides and putative vacuolar sorting determinants of either the sequence or structure specific type or the C-terminal type, or both. Unexpectedly, sap protein variants imported via the ER showed multiple molecular forms because of extensive and unspecific proteolytic cleavage of exposed N- and C-terminal propeptides and surface loops, in spite of the abundance of protease inhibitors. Some propeptides are potential novel vacuolar targeting peptides. In the insoluble vacuole fraction two variants of phytepsin (aspartate protease) were identified. These are most probably the processing enzymes of potato tuber vacuolar proteins. Database Proteome data have been submitted to the PRIDE database under accession number 17707.
Assuntos
Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Solanum tuberosum/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Cromatografia por Troca Iônica , Citosol/metabolismo , Hidrólise , Dados de Sequência Molecular , Filogenia , Transporte Proteico , Proteoma , Homologia de Sequência de Aminoácidos , Solanum tuberosum/enzimologiaRESUMO
Potato (Solanum tuberosum) is the fourth largest crop worldwide in yield, and cv. Kuras is the major starch potato of northern Europe. Storage starch is packed densely in tuber amyloplasts, which become starch granules. Amyloplasts of soil-grown mini-tubers and agar-grown micro-tubers of cv. Kuras were purified. The mini-tuber amyloplast preparation was enriched 10-20-fold and the micro-tuber amyloplast approximately fivefold over comparative total protein extracts. Proteins separated by SDS-PAGE were digested with trypsin, analysed by mass spectrometry and identified by mascot software searches against an in-house potato protein database and the NCBI non-redundant plant database. The differential growth conditions for mini- and micro-tubers gave rise to rather different protein profiles, but the major starch granule-bound proteins were identical for both and dominated by granule-bound starch synthase I, starch synthase II and alpha-glucan water dikinase. Soluble proteins were dominated by starch phosphorylase L-1, other large proteins of the classes 'starch and sucrose metabolism', 'pentose phosphate pathway', 'glycolysis', 'amino acid metabolism', and other proteins such as plastid chaperonins. The majority of the identified proteins had a predicted plastid transit peptide, supporting their presence in the amyloplast. However, several highly expressed proteins had no transit peptide, such as starch phosphorylase H, or had a predicted mitochondrial location. Intriguingly, all polyphenol oxidases, a family of enolases, one transketolase, sulfite reductase, deoxynucleoside kinase-like and dihydroxy-acid dehydrase had twin-arginine translocation motifs, and a homologue to dihydrolipoamide dehydrogenase had a Sec (secretory) motif; these motifs usually target thylakoid-like structures.
Assuntos
Tubérculos/metabolismo , Plastídeos/metabolismo , Proteoma/metabolismo , Solanum tuberosum/metabolismo , Espectrometria de Massas , Tubérculos/química , Plastídeos/química , Proteoma/química , Solanum tuberosum/química , Amido/metabolismo , Sacarose/metabolismoRESUMO
The Virtual Expert Mass Spectrometrist (VEMS) program package was developed for flexible, automated, and manual de novo tandem mass spectrometry (MS/MS) protein sequencing, and includes accessory programs for matrix-assisted laser desorption/ionization-mass spectrometry (MS) interpretation, and generation of protein and peptide databases. VEMS V2.0 has been developed into a fast tool for combining database-independent and -dependent protein assignments in an extended analysis of MS/MS-peptide data. MS or MS/MS data can be directly recalibrated after the first search by fitting the data to the best search result using polynomial equations. The score function is an improvement of known scoring algorithms and can be adapted for any MS instrument type. In addition, VEMS offers a novel statistical model for evaluating the significance of the protein assignment. The novel features are illustrated by the analysis of the fragmentation spectra obtained by liquid chromatrography-MS/MS analysis of peptides from an anionic peroxidase enriched protein fraction from potato root tissue. The extended analysis mode resulted in the additional assignment of spectra for nine modified tryptic peptides and nine miscleaved peptides, in addition to the 45 spectra from regular tryptic peptides. Of the nine modified peptides, three were glycosylated.
Assuntos
Bases de Dados de Proteínas , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Peptídeos/análise , Análise de Sequência de Proteína/métodos , Software , Algoritmos , Sequência de Aminoácidos , Sequência de Carboidratos , Dados de Sequência Molecular , Extratos Vegetais/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Solanum tuberosum/químicaRESUMO
Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha-subunit of pyruvate dehydrogenase (PDH). Isoelectric focusing/SDS-PAGE two-dimensional gels separated FDH and PDH and resolved several different phosphorylated forms of FDH. By using combinations of matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization tandem mass spectrometry, several phosphorylation sites were identified for the first time in FDH and PDH. FDH was phosphorylated on Thr76 and Thr333, whereas PDH was phosphorylated on Ser294. Both Thr76 and Thr333 in FDH were accessible to protein kinases, as demonstrated by protein structure homology modeling. The extent of phosphorylation of both FDH and PDH was strongly decreased by NAD+, formate, and pyruvate, indicating that reversible phosphorylation of FDH and PDHs was regulated in a similar fashion. At low oxygen concentrations inside the intact potato tubers, FDH activity was strongly increased relative to cytochrome c oxidase activity pointing to a possible involvement of FDH in hypoxic metabolism. Computational sequence analysis indicated that a conserved local sequence motif of pyruvate formate-lyase is found in the Arabidopsis thaliana genome, and this enzyme might be the source of formate for FDH in plants.