Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Adv Exp Med Biol ; 975 Pt 1: 475-495, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28849476

RESUMO

The cysteine dioxygenase (Cdo1)-null mouse is unable to synthesize hypotaurine and taurine by the cysteine/cysteine sulfinate pathway and has very low taurine levels in all tissues. The lack of taurine is associated with a lack of taurine conjugation of bile acids, a dramatic increase in the total and unconjugated hepatic bile acid pools, and an increase in betaine and other molecules that serve as organic osmolytes. We used the Cdo1-mouse model to determine the effects of taurine deficiency on expression of proteins involved in sulfur amino acid and bile acid metabolism. We identified cysteine sulfinic acid decarboxylase (Csad), betaine:homocysteine methytransferase (Bhmt), cholesterol 7α-hydroxylase (Cyp7a1), and cytochrome P450 3A11 (Cyp3a11) as genes whose hepatic expression is strongly regulated in response to taurine depletion in the Cdo1-null mouse. Dietary taurine supplementation of Cdo1-null mice restored hepatic levels of these four proteins and their respective mRNAs to wild-type levels, whereas dietary taurine supplementation had no effect on abundance of these proteins or mRNAs in wild-type mice.


Assuntos
Cisteína Dioxigenase/deficiência , Expressão Gênica/fisiologia , Fígado/metabolismo , Taurina/metabolismo , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Taurina/farmacologia
2.
Ann N Y Acad Sci ; 1363: 99-115, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26995761

RESUMO

To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial ß-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved.


Assuntos
Cisteína/metabolismo , Metabolismo Energético , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Animais , Biomarcadores , Composição Corporal , Peso Corporal , Cisteína Dioxigenase , Citocinas/sangue , Dieta , Feminino , Genótipo , Hormônios/sangue , Fígado/metabolismo , Masculino , Metaboloma , Metabolômica/métodos , Metionina/metabolismo , Camundongos , Camundongos Knockout , Estearoil-CoA Dessaturase , Taurina/metabolismo
3.
Amino Acids ; 48(3): 665-676, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26481005

RESUMO

The cysteine dioxygenase (Cdo1)-null and the cysteine sulfinic acid decarboxylase (Csad)-null mouse are not able to synthesize hypotaurine/taurine by the cysteine/cysteine sulfinate pathway and have very low tissue taurine levels. These mice provide excellent models for studying the effects of taurine on biological processes. Using these mouse models, we identified betaine:homocysteine methyltransferase (BHMT) as a protein whose in vivo expression is robustly regulated by taurine. BHMT levels are low in liver of both Cdo1-null and Csad-null mice, but are restored to wild-type levels by dietary taurine supplementation. A lack of BHMT activity was indicated by an increase in the hepatic betaine level. In contrast to observations in liver of Cdo1-null and Csad-null mice, BHMT was not affected by taurine supplementation of primary hepatocytes from these mice. Likewise, CSAD abundance was not affected by taurine supplementation of primary hepatocytes, although it was robustly upregulated in liver of Cdo1-null and Csad-null mice and lowered to wild-type levels by dietary taurine supplementation. The mechanism by which taurine status affects hepatic CSAD and BHMT expression appears to be complex and to require factors outside of hepatocytes. Within the liver, mRNA abundance for both CSAD and BHMT was upregulated in parallel with protein levels, indicating regulation of BHMT and CSAD mRNA synthesis or degradation.


Assuntos
Betaína/metabolismo , Regulação Enzimológica da Expressão Gênica , Homocisteína S-Metiltransferase/genética , Fígado/metabolismo , Taurina/deficiência , Animais , Cisteína Dioxigenase/genética , Suplementos Nutricionais/análise , Regulação para Baixo , Feminino , Hepatócitos/metabolismo , Homocisteína S-Metiltransferase/metabolismo , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Front Biosci (Elite Ed) ; 8(2): 326-50, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709665

RESUMO

Life expectancy in the U.S. and globally continues to increase. Despite increased life expectancy quality of life is not enhanced, and older adults often experience chronic age-related disease and functional disability, including frailty. Additionally, changes in body composition such as the involuntary loss of skeletal muscle mass (i.e. sarcopenia) and subsequent increases in adipose tissue can augment disease and disability in this population. Furthermore, increased oxidative stress and decreased antioxidant concentrations may also lead to metabolic dysfunction in older adults. Specific amino acids, including leucine, cysteine and its derivative taurine, and arginine can play various roles in healthy aging, especially in regards to skeletal muscle health. Leucine and arginine play important roles in muscle protein synthesis and cell growth while cysteine and arginine play important roles in quenching oxidative stress. Evidence suggests that supplemental doses of each of these amino acids may improve the aging phenotype. However, additional research is required to establish the doses required to achieve positive outcomes in humans.


Assuntos
Envelhecimento/fisiologia , Aminoácidos/fisiologia , Músculo Esquelético/fisiologia , Humanos
5.
Hepatol Res ; 44(10): E218-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24033844

RESUMO

AIM: Bile acid synthesis is regulated by nuclear receptors including farnesoid X receptor (FXR) and small heterodimer partner (SHP), and by fibroblast growth factor 15/19 (FGF15/19). We hypothesized that hepatic cysteine sulfinic acid decarboxylase (CSAD) (a key enzyme in taurine synthesis) is regulated by bile acids (BA). The aim of this study was to investigate CSAD regulation by BA dependent regulatory mechanisms. METHODS: Mice were fed a control diet or a diet supplemented with either 0.5% cholate or 2% cholestyramine. To study BA dependent pathways, we utilized GW4064 (FXR agonist), FGF19 or T-0901317 (liver X receptor [LXR] agonist) and Shp-/- mice. Tissue mRNA was determined by quantitative reverse transcription polymerase chain reaction. Amino acids were measured by high-performance liquid chromatography. RESULTS: Mice supplemented with dietary cholate exhibited reduced hepatic CSAD mRNA while those receiving cholestyramine exhibited increased mRNA. Activation of FXR suppressed CSAD mRNA expression whereas CSAD expression was increased in Shp-/- mice. Hepatic hypotaurine concentration (the product of CSAD) was higher in Shp-/- mice with a corresponding increase in serum taurine conjugated BA. FGF19 administration suppressed hepatic cholesterol 7-α-hydroxylase (CYP7A1) mRNA but did not change CSAD mRNA expression. LXR activation induced CYP7A1 mRNA yet failed to induce CSAD mRNA expression. CONCLUSION: BA regulate CSAD mRNA expression in a feedback fashion via mechanisms involving SHP and FXR but not FGF15/19 or LXR. These findings implicate BA as regulators of CSAD mRNA via mechanisms shared with CYP7A1.

6.
Antioxid Redox Signal ; 19(12): 1321-36, 2013 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-23350603

RESUMO

AIMS: To define the consequences of loss of cysteine dioxygenase (CDO) on cysteine metabolism at the tissue level, we determined levels of relevant metabolites and enzymes and evidence of H2S/HS(-) (gaseous hydrogen sulfide and its conjugate base) toxicity in liver, pancreas, kidney, and lung of CDO(-/-) mice that were fed either a taurine-free or taurine-supplemented diet. RESULTS: CDO(-/-) mice had low tissue and serum taurine and hypotaurine levels and high tissue levels of cysteine, consistent with the loss of CDO. CDO(-/-) mice had elevated urinary excretion of thiosulfate, high tissue and serum cystathionine and lanthionine levels, and evidence of inhibition and destabilization of cytochrome c oxidase, which is consistent with excess production of H2S/HS(-). Accumulation of cystathionine and lanthionine appeared to result from cystathionine ß-synthase (CBS)-mediated cysteine desulfhydration. Very high levels of hypotaurine in pancreas of wild-type mice and very high levels of cystathionine and lanthionine in pancreas of CDO(-/-) mice were observed, suggesting a unique cysteine metabolism in the pancreas. INNOVATION: The CDO(-/-) mouse model provides new insights into tissue-specific cysteine metabolism, particularly the role of pancreas in metabolism of excess cysteine by CBS-catalyzed reactions, and will be a useful model for studying the effects of excess endogenous production of H2S/HS(-). CONCLUSION: The CDO(-/-) mouse clearly demonstrates that H2S/HS(-) production in tissues can exceed the capacity of the animal to oxidize sulfide to sulfate and demonstrates that pancreas and lung are more susceptible to toxicity from endogenous H2S/HS(-)production than are liver and kidney.


Assuntos
Cisteína Dioxigenase/genética , Cisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Pulmão/metabolismo , Pâncreas/metabolismo , Alanina/análogos & derivados , Alanina/metabolismo , Animais , Cistationina/metabolismo , Cisteína Dioxigenase/deficiência , Dieta , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Estabilidade Enzimática , Feminino , Glutationa/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Pâncreas/patologia , Sulfetos/metabolismo , Taurina/análogos & derivados , Taurina/metabolismo
7.
Am J Physiol Endocrinol Metab ; 301(4): E668-84, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21693692

RESUMO

Cysteine homeostasis is dependent on the regulation of cysteine dioxygenase (CDO) in response to changes in sulfur amino acid intake. CDO oxidizes cysteine to cysteinesulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. To gain insight into the physiological function of CDO and the consequence of a loss of CDO activity, mice carrying a null CDO allele (CDO(+/-) mice) were crossed to generate CDO(-/-), CDO(+/-), and CDO(+/+) mice. CDO(-/-) mice exhibited postnatal mortality, growth deficit, and connective tissue pathology. CDO(-/-) mice had extremely low taurine levels and somewhat elevated cysteine levels, consistent with the lack of flux through CDO-dependent catabolic pathways. However, plasma sulfate levels were slightly higher in CDO(-/-) mice than in CDO(+/-) or CDO(+/+) mice, and tissue levels of acid-labile sulfide were elevated, indicating an increase in cysteine catabolism by cysteine desulfhydration pathways. Null mice had lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Supplementation of mice with taurine improved survival of male pups but otherwise had little effect on the phenotype of the CDO(-/-) mice. H(2)S has been identified as an important gaseous signaling molecule as well as a toxicant, and pathology may be due to dysregulation of H(2)S production. Control of cysteine levels by regulation of CDO may be necessary to maintain low H(2)S/sulfane sulfur levels and facilitate the use of H(2)S as a signaling molecule.


Assuntos
Cisteína Dioxigenase/fisiologia , Cisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Taurina/biossíntese , Animais , Cisteína Dioxigenase/genética , Transporte de Elétrons/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout
9.
J Nutr ; 139(2): 207-14, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19106324

RESUMO

Taurine is the most abundant free amino acid in the body and is synthesized in mammals by 2 pathways. Taurine is synthesized either from the oxidation of cysteine via cysteine dioxygenase (CDO), which generates cysteinesulfinate that is decarboxylated by cysteinesulfinic acid decarboxylase (CSAD), or from the oxidation of cysteamine by cysteamine (2-aminoethanethiol) dioxygenase (ADO). Both pathways generate hypotaurine, which is oxidized to taurine. To determine whether these pathways for taurine synthesis are present in the adipocyte, we studied 3T3-L1 cells during their adipogenic conversion and fat from rats fed diets with varied sulfur-amino acid content. CDO, CSAD, and ADO protein levels increased during adipogenic differentiation of 3T3-L1 cells and all of these enzymes were significantly increased when cells achieved a mature adipocyte phenotype. Furthermore, these changes were accompanied by an increased hypotaurine and taurine production, particularly when cells were treated with cysteine or cysteamine. CDO mRNA levels also responded robustly to cysteine or cysteamine treatment in adipocytes but not in undifferentiated 3T3-L1 cells. Furthermore, CDO protein and activity were greater in adipose tissue from rats fed a high protein or cystine-supplemented low protein (LP) diet than in adipose tissue from rats fed a LP diet. Overall, our results demonstrate that CDO is regulated at both the level of enzyme abundance and the level of mRNA in mature adipocytes.


Assuntos
Adipócitos/metabolismo , Carboxiliases/metabolismo , Cisteína Dioxigenase/metabolismo , Dioxigenases/metabolismo , Taurina/biossíntese , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/enzimologia , Animais , Western Blotting , Diferenciação Celular , Cisteamina/farmacologia , Cisteína/farmacologia , Cisteína Dioxigenase/genética , Inibidores de Cisteína Proteinase/farmacologia , Feminino , Masculino , Camundongos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
10.
JAMA ; 299(3): 308-15, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18212315

RESUMO

CONTEXT: Maintaining independence of older persons is a public health priority, and identifying the factors that contribute to decline in physical function is needed to prevent or postpone the disablement process. The potential deleterious effect of poor nutrition on decline in physical function in older persons is unclear. OBJECTIVE: To determine whether a low serum concentration of micronutrients is associated with subsequent decline in physical function among older men and women living in the community. DESIGN, SETTING, AND PARTICIPANTS: Longitudinal study of 698 community-living persons 65 years or older who were randomly selected from a population registry in Tuscany, Italy. Participants completed the baseline examination from November 1, 1998, through May 28, 2000, and the 3-year follow-up assessments from November 1, 2001, through March 30, 2003. MAIN OUTCOME MEASURE: Decline in physical function was defined as a loss of at least 1 point in the Short Physical Performance Battery during the 3-year follow-up. Odds ratios (ORs) were calculated for the lowest quartile of each nutrient using the other 3 quartiles combined as the reference group. Two additional and complementary analytical approaches were used to confirm the validity of the results. RESULTS: The mean decline in the Short Physical Performance Battery score was 1.1 point. In a logistic regression analysis that was adjusted for potential confounders, only a low concentration of vitamin E (<1.1 microg/mL [<24.9 micromol/L]) was significantly associated with subsequent decline in physical function (OR, 1.62; 95% confidence interval, 1.11-2.36; P = .01 for association of lowest alpha-tocopherol quartile with at least a 1-point decline in physical function). In a general linear model, the concentration of vitamin E at baseline, when analyzed as a continuous measure, was significantly associated with the Short Physical Performance Battery score at follow-up after adjustment for potential confounders and Short Physical Performance Battery score at baseline (beta = .023; P = .01). In a classification and regression tree analysis, age older than 81 years and vitamin E (in participants aged 70-80 years) were identified as the strongest determinants of decline in physical function (physical decline in 84% and 60%, respectively; misclassification error rate, 0.33). CONCLUSIONS: These results provide empirical evidence that a low serum concentration of vitamin E is associated with subsequent decline in physical function among community-living older adults. Clinical trials may be warranted to determine whether an optimal concentration of vitamin E reduces functional decline and the onset of disability in older persons.


Assuntos
Envelhecimento/fisiologia , Micronutrientes/sangue , Destreza Motora/fisiologia , Vitamina E/sangue , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Modelos Logísticos , Estudos Longitudinais , Masculino , Estado Nutricional
11.
J Nutr ; 136(6 Suppl): 1652S-1659S, 2006 06.
Artigo em Inglês | MEDLINE | ID: mdl-16702335

RESUMO

The mammalian liver tightly regulates its free cysteine pool, and intracellular cysteine in rat liver is maintained between 20 and 100 nmol/g even when sulfur amino acid intakes are deficient or excessive. By keeping cysteine levels within a narrow range and by regulating the synthesis of glutathione, which serves as a reservoir of cysteine, the liver addresses both the need to have adequate cysteine to support normal metabolism and the need to keep cysteine levels below the threshold of toxicity. Cysteine catabolism is tightly regulated via regulation of cysteine dioxygenase (CDO) levels in the liver, with the turnover of CDO protein being dramatically decreased when intracellular cysteine levels increase. This occurs in response to changes in the intracellular cysteine concentration via changes in the rate of CDO ubiquitination and degradation. Glutathione synthesis also increases when intracellular cysteine levels increase as a result of increased saturation of glutamate-cysteine ligase (GCL) with cysteine, and this contributes to removal of excess cysteine. When cysteine levels drop, GCL activity increases, and the increased capacity for glutathione synthesis facilitates conservation of cysteine in the form of glutathione (although the absolute rate of glutathione synthesis still decreases because of the lack of substrate). This increase in GCL activity is dependent on up-regulation of expression of both the catalytic and modifier subunits of GCL, resulting in an increase in total catalytic subunit plus an increase in the catalytic efficiency of the enzyme. An important role of cysteine utilization for coenzyme A synthesis in maintaining cellular cysteine levels in some tissues, and a possible connection between the necessity of controlling cellular cysteine levels to regulate the rate of hydrogen sulfide production, have been suggested by recent literature and are areas that deserve further study.


Assuntos
Cisteína/metabolismo , Homeostase , Amidoidrolases/metabolismo , Aminoácidos , Animais , Coenzima A/biossíntese , Cisteína/análise , Cisteína Dioxigenase/metabolismo , Suplementos Nutricionais , Dimerização , Proteínas Ligadas por GPI , Glutamato-Cisteína Ligase/metabolismo , Glutationa/biossíntese , Humanos , Fígado/química , Fígado/enzimologia , Fígado/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ácido Pirúvico/metabolismo , Taurina/biossíntese
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 61(Pt 11): 1013-6, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16511222

RESUMO

Cysteine dioxygenase (CDO; EC 1.13.11.20) is an approximately 23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O2, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 A resolution and belonged to space group P4(3)2(1)2 or P4(1)2(1)2, with unit-cell parameters a = b = 57.55, c = 123.06 A, alpha = beta = gamma = 90 degrees. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.


Assuntos
Cisteína Dioxigenase/química , Cisteína/química , Ferro/química , Compostos de Sulfidrila/química , Animais , Sítios de Ligação , Catálise , Clonagem Molecular , Cristalização , Cisteína/análogos & derivados , DNA Complementar/metabolismo , Dioxigenases/química , Fator Xa/química , Histidina/química , Fígado/metabolismo , Oxirredução , Oxigênio/química , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes/química , Solubilidade , Temperatura , Difração de Raios X
13.
Am J Physiol Endocrinol Metab ; 286(3): E439-48, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14644768

RESUMO

Hepatic cysteine dioxygenase (CDO) activity is a critical regulator of cellular cysteine concentration and availability of cysteine for anabolic processes and is markedly higher in animals fed diets containing excess sulfur amino acids compared with those fed levels at or below the requirement. Rat hepatocytes responded to a deficiency or excess of cysteine in the culture medium with a decrease or increase in CDO level but no change in CDO mRNA level. The cysteine analog, cysteamine, but not cysteine metabolites or thiol reagents, was also effective in increasing CDO. Inhibitors of the 26S proteasome blocked CDO degradation in cysteine-deficient cells but had little or no effect on CDO concentration in hepatocytes cultured with excess cysteine. High-molecular-mass CDO-ubiquitin conjugates were observed in cells cultured in cysteine-deficient medium, whether or not proteasome inhibitor was present, but these CDO-ubiquitin conjugates were not observed in cells cultured in cysteine-supplemented medium with or without proteasome inhibitor. Similar results were observed for degradation of recombinant CDO expressed in human heptocarcinoma cells cultured in cysteine-deficient or cysteine-supplemented medium. CDO is an example of a mammalian enzyme that is robustly regulated via its substrate, with the presence of substrate blocking the ubiquitination of CDO and, hence, the targeting of CDO for proteasomal degradation. This regulation occurs in primary hepatocytes in a manner that corresponds with changes observed in intact animals.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína/metabolismo , Dioxigenases , Regulação Enzimológica da Expressão Gênica , Hepatócitos/metabolismo , Fígado/metabolismo , Complexos Multienzimáticos/metabolismo , Oxigenases/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Cisteína Dioxigenase , Ativação Enzimática , Homeostase/fisiologia , Humanos , Masculino , Oxigenases/genética , Complexo de Endopeptidases do Proteassoma , Ratos , Ratos Sprague-Dawley
14.
J Nutr ; 133(9): 2697-702, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12949352

RESUMO

Cysteine, rather than a precursor or metabolite of cysteine, appears to mediate the upregulation of cysteine dioxygenase (CDO) and the downregulation of glutamate cysteine ligase (GCL) in cultured primary rat hepatocytes. However, similar experiments in intact rats have not been performed to confirm in vivo that changes in hepatic cysteine levels are associated with the regulation of CDO or GCL activity. Therefore, rats were fed a low protein basal diet (100 g casein/kg diet) with or without supplemental sulfur amino acids (8 g cystine, 9 g homocystine or 10 g methionine/kg diet) and with or without propargylglycine (PPG, 1 mmol/kg), an irreversible inhibitor of cystathionine gamma-lyase. Rats were fed the assigned diet for 2 full days and up until the mid-point of the dark cycle on d 3, at which time they were killed for collection of liver. Rats fed the PPG-containing diets had hepatic cystathionine gamma-lyase activities that were approximately 16% of the uninhibited level. PPG treatment reduced CDO activity by 50 and 54%, increased GCL activity by 41 and 61% and lowered total cysteine concentration by 33 and 64% in liver of the homocystine and methionine-supplemented groups, respectively, but not in the cystine-supplemented groups or unsupplemented groups. Glutathione levels were not affected by PPG treatment in any groups. These experiments are consistent with a role for cysteine, rather than a precursor or metabolite of cysteine, in the metabolic signaling responsible for diet-induced regulation of CDO and GCL.


Assuntos
Cisteína/metabolismo , Dieta , Dioxigenases , Glutamato-Cisteína Ligase/metabolismo , Glicina/análogos & derivados , Fígado/enzimologia , Oxigenases/metabolismo , Transdução de Sinais , Alcinos/farmacologia , Animais , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Cisteína Dioxigenase , Ingestão de Alimentos , Glutationa/metabolismo , Glicina/farmacologia , Fígado/anatomia & histologia , Fígado/efeitos dos fármacos , Masculino , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley , Aumento de Peso
15.
J Nutr ; 132(11): 3369-78, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12421853

RESUMO

In liver, cysteine dioxygenase (CDO), cysteinesulfinate decarboxylase (CSD), and gamma-glutamylcysteine synthetase (GCS) play important regulatory roles in the metabolism of cysteine to sulfate, taurine and glutathione. Because glutathione is released by the liver and degraded by peripheral tissues that express gamma-glutamyl transpeptidase, some peripheral tissues may be exposed to relatively high concentrations of cysteine. Rats were fed diets that contained low, moderate or high concentrations of protein or supplemental cysteine or methionine for 2 wk, and CDO, CSD and GCS activities, concentrations and mRNA levels and the concentrations of cysteine, taurine and glutathione were measured in liver, kidney, lung and brain. All three enzymes in liver responded to the differences in dietary protein or sulfur amino acid levels, but only CSD in kidney and none of the three enzymes in lung and brain responded. Renal CSD activity was twice as much in rats fed the low protein diet as in rats fed the other diets. Changes in renal CSD activity were correlated with changes in CSD concentration. Some significant differences in cysteine concentration in kidney and lung and glutathione and taurine concentrations in kidney were observed, with higher concentrations in rats fed higher levels of protein or sulfur amino acids. In liver, the changes in cysteine level were consistent with cysteine-mediated regulation of hepatic CDO activity, and changes in taurine level were consistent with predicted changes in cysteine catabolism due to the changes in cysteine concentration and CDO activity. Changes in renal and lung cysteine, taurine or glutathione concentrations were not associated with a similar pattern of change in CDO, CSD or GCS activity. Overall, the results confirm the importance of the liver in the maintenance of cysteine homeostasis.


Assuntos
Cisteína/administração & dosagem , Cisteína/metabolismo , Proteínas Alimentares/administração & dosagem , Dioxigenases , Enzimas/metabolismo , Metionina/administração & dosagem , Animais , Química Encefálica , Carboxiliases/genética , Carboxiliases/metabolismo , Cisteína Dioxigenase , Dieta , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/análise , Rim/química , Rim/enzimologia , Fígado/química , Fígado/enzimologia , Pulmão/química , Pulmão/enzimologia , Masculino , Oxigenases/genética , Oxigenases/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Sulfatos/análise , Taurina/análise , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA