Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 223(3): 1607-1620, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31087371

RESUMO

(E)-ß-Farnesene (EßF) is the predominant constituent of the alarm pheromone of most aphid pest species. Moreover, natural enemies of aphids use EßF to locate their aphid prey. Some plant species emit EßF, potentially as a defense against aphids, but field demonstrations are lacking. Here, we present field and laboratory studies of flower defense showing that ladybird beetles are predominantly attracted to young stage-2 pyrethrum flowers that emitted the highest and purest levels of EßF. By contrast, aphids were repelled by EßF emitted by S2 pyrethrum flowers. Although peach aphids can adapt to pyrethrum plants in the laboratory, aphids were not recorded in the field. Pyrethrum's (E)-ß-farnesene synthase (EbFS) gene is strongly expressed in inner cortex tissue surrounding the vascular system of the aphid-preferred flower receptacle and peduncle, leading to elongated cells filled with EßF. Aphids that probe these tissues during settlement encounter and ingest plant EßF, as evidenced by the release in honeydew. These EßF concentrations in honeydew induce aphid alarm responses, suggesting an extra layer of this defense. Collectively, our data elucidate a defensive mimicry in pyrethrum flowers: the developmentally regulated and tissue-specific EßF accumulation and emission both prevents attack by aphids and recruits aphid predators as bodyguards.


Assuntos
Afídeos/fisiologia , Carnivoridade/fisiologia , Chrysanthemum cinerariifolium/fisiologia , Flores/fisiologia , Herbivoria , Feromônios/farmacologia , Animais , Monoterpenos Bicíclicos/metabolismo , Chrysanthemum cinerariifolium/efeitos dos fármacos , Chrysanthemum cinerariifolium/genética , Besouros/fisiologia , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Pirofosfatases/genética , Pirofosfatases/metabolismo , Sesquiterpenos/metabolismo , Compostos Orgânicos Voláteis/análise
2.
PLoS One ; 11(9): e0160719, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27631494

RESUMO

Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells) and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP) technique) to study the effect of food compounds. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.


Assuntos
Expressão Gênica/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Cebolas/química , Extratos Vegetais/farmacologia , Animais , Células CACO-2 , Humanos , Mucosa Intestinal/metabolismo , Extratos Vegetais/química , Ratos , Especificidade da Espécie
3.
J Agric Food Chem ; 63(49): 10628-40, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26567868

RESUMO

In vitro liver metabolism of 11 prenylated flavonoids and isoflavonoids was investigated by determining their phase I glucuronyl and sulfate metabolites using pork liver preparations. One hundred metabolites were annotated using RP-UHPLC-ESI-MS(n). A mass spectrometry-based data interpretation guideline was proposed for the tentative annotation of the position of hydroxyl groups, considering its relevance for estrogenic activity. To relate structure to metabolism, compounds were classified on the basis of three criteria: backbone structure (isoflavene, isoflavan, or flavanone), number of prenyl groups (0, 1, or 2), and prenyl configuration (chain or pyran). Glucuronidation was most extensive for isoflavenes and for unprenylated compounds (yield of 90-100%). Pyran and chain prenylation gave more complex hydroxylation patterns with 4 or more than 6 hydroxyl isomers, respectively, as compared to unprenylated compounds (only 1 hydroxyl isomer). Moreover, the number of hydroxyl isomers also increased with the number of prenyl groups.


Assuntos
Flavonoides/química , Flavonoides/metabolismo , Glycyrrhiza/química , Humulus/química , Fígado/metabolismo , Prenilação , Glucuronídeos/química , Isomerismo , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Estrutura Molecular , Extratos Vegetais/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA