Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioelectromagnetics ; 39(7): 529-538, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30334586

RESUMO

Portable devices measuring radiofrequency electromagnetic fields (RF-EMF) are affected by crosstalk: signals originating in one frequency band that are unintentionally registered in another. If this is not corrected, total exposure to RF-EMF is biased, particularly affecting closely spaced frequency bands such as GSM 1800 downlink (1,805-1,880 MHz), DECT (1,880-1,900 MHz), and UMTS uplink (1,920-1,980 MHz). This study presents an approach to detect and correct crosstalk in RF-EMF measurements, taking into account the real-life setting in which crosstalk is intermittently present, depending on the exact frequency of the signal. Personal measurements from 115 volunteers from Zurich canton, Switzerland were analyzed. Crosstalk-affected observations were identified by correlation analysis, and replaced by the median value of the unaffected observations, measured during the same activity. DECT is frequently a victim of crosstalk, and an average of 43% of observations was corrected, resulting in an average exposure reduction of 38%. GSM 1800 downlink and UMTS uplink were less often corrected (6.9% and 8.9%), resulting in minor reductions in exposure (7.1% and 0.92%). The contribution of DECT to total RF-EMF exposure is typically already low (3.2%), but is further reduced after correction (3.0%). Crosstalk corrections reduced the total exposure by 1.0% on average. Some individuals had a larger reduction of up to 16%. The code developed to make the corrections is provided for free as an R function which is easily applied to any time series of EMF measurements. Bioelectromagnetics. 39:529-538, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Artefatos , Campos Eletromagnéticos , Monitoramento de Radiação/instrumentação , Ondas de Rádio
2.
Bioelectromagnetics ; 37(3): 183-189, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26991812

RESUMO

Exposure to extremely low-frequency magnetic fields (ELF-MF) was evaluated in an International Agency for Research on Cancer (IARC) Monographs as "possibly carcinogenic to humans" in 2001, based on increased childhood leukemia risk observed in epidemiological studies. We conducted a hazard assessment using available scientific evidence published before March 2015, with inclusion of new research findings from the Advanced Research on Interaction Mechanisms of electroMagnetic exposures with Organisms for Risk Assessment (ARIMMORA) project. The IARC Monograph evaluation scheme was applied to hazard identification. In ARIMMORA for the first time, a transgenic mouse model was used to mimic the most common childhood leukemia: new pathogenic mechanisms were indicated, but more data are needed to draw definitive conclusions. Although experiments in different animal strains showed exposure-related decreases of CD8+ T-cells, a role in carcinogenesis must be further established. No direct damage of DNA by exposure was observed. Overall in the literature, there is limited evidence of carcinogenicity in humans and inadequate evidence of carcinogenicity in experimental animals, with only weak supporting evidence from mechanistic studies. New exposure data from ARIMMORA confirmed that if the association is nevertheless causal, up to 2% of childhood leukemias in Europe, as previously estimated, may be attributable to ELF-MF. In summary, ARIMMORA concludes that the relationship between ELF-MF and childhood leukemia remains consistent with possible carcinogenicity in humans. While this scientific uncertainty is dissatisfactory for science and public health, new mechanistic insight from ARIMMORA experiments points to future research that could provide a step-change in future assessments. Bioelectromagnetics. 37:183-189, 2016. © 2016 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA