Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 18(3): 509-528, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37682502

RESUMO

The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aß) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent the increased production of Aß and phospho-Tau in AD. Peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that can activate autophagy, and transcriptionally regulate transcription factor EB (TFEB) which is a key regulator of ALP. This suggests that targeting PPARα, to reduce ALP impairment, could be a viable strategy for AD therapy. In this study, we investigated the anti-AD activity of Caudatin, an active constituent of Cynanchum otophyllum (a traditional Chinese medicinal herb, Qing Yang Shen; QYS). We found that Caudatin can bind to PPARα as a ligand and augment the expression of ALP in microglial cells and in the brain of 3XTg-AD mice model. Moreover, Caudatin could activate PPARα and transcriptionally regulates TFEB-augmented lysosomal degradation of Aß and phosphor-Tau aggregates in AD cell models. Oral administration of Caudatin decreased AD pathogenesis and ameliorated the cognitive dysfunction in 3XTg-AD mouse model. Conclusively, Caudatin can be a potential AD therapeutic agent via activation of PPARα-dependent ALP.

3.
Phytomedicine ; 96: 153887, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34936968

RESUMO

BACKGROUND: Collective evidences have indicated that intracellular accumulation of hyperphosphorylated tau forms neurofibrillary tangles in the brain, which impairs memory, cognition and affects social activities in Alzheimer's disease (AD). PURPOSE: To investigate the tau-reducing, and memory-enhancing properties of protopine (PRO), a natural alkaloid isolated from Chinese herbal medicine Corydalis yanhusuo (Yanhusuo in Chinese). STUDY DESIGN: By using Histone deacetylase 6 (HDAC6) profiling and immunoprecipitation assays, we assessed that PRO mediated the heat shock protein 90 (HSP90) chaperonic activities for the degradation of pathological tau in AD cell culture models. To study the efficacy of PRO in vivo, we employed 3xTg-AD and P301S tau mice models. METHODS: Liquid chromatography/quadrupole time-of-flight mass spectrometry was used to analyze the pharmacokinetic profile of PRO. Seven-month-old 3xTg-AD mice and 1.5-month-old P301S mice were administered PRO (1 and 2.5 mg/kg) orally every day. Morris water maze, contextual fear conditioning and rotarod assays were applied for studying memory functions. Sarkosyl differential centrifugation was used to analyze soluble and insoluble tau. Immunohistochemical analysis were performed to determine tau deposits in AD mice's brain sections. Molecular docking, binding affinity studies and primary cell culture studies were performed to demonstrate the mechanism of action of PRO in silico and in vitro. RESULTS: Our pharmacokinetic profiling demonstrated that PRO significantly entered the brain at a concentration of 289.47 ng/g, and specifically attenuated tau pathology, improved learning and memory functions in both 3xTg-AD and P301S mice. Docking, binding affinity studies, and fluorometric assays demonstrated that PRO directly bound to the catalytic domain 1 (CD1) of HDAC6 and down-regulated its activity. In primary cortical neurons, PRO enhanced acetylation of α-tubulin, indicating HDAC6 inhibition. Meanwhile, PRO promoted the ubiquitination of tau and recruited heat shock protein 70 (HSP70) and heat shock cognate complex 71 (HSC70) for the degradation of pathological tau via the ubiquitin-proteasomal system (UPS). CONCLUSION: We identified PRO as a natural HDAC6 inhibitor that attenuated tau pathology and improved memory dysfunctions in AD mice. The findings from this study provides a strong justification for future clinical development of plant-derived protopine as a novel agent for the treatment of tau-related neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Desacetilase 6 de Histona , Doença de Alzheimer/tratamento farmacológico , Animais , Benzofenantridinas , Alcaloides de Berberina , Modelos Animais de Doenças , Desacetilase 6 de Histona/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Proteínas tau
4.
Phytomedicine ; 91: 153648, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34332287

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid ß plaques (Aß) and neurofibrillary tangles (NFTs) is the key pathological hallmark of AD. Accumulating evidence suggest that impairment of autophagy-lysosomal pathway (ALP) plays key roles in AD pathology. PURPOSE: The present study aims to assess the neuroprotective effects of Qingyangshen (QYS), a Chinese herbal medicine, in AD cellular and animal models and to determine its underlying mechanisms involving ALP regulation. METHODS: QYS extract was prepared and its chemical components were characterized by LC/MS. Then the pharmacokinetics and acute toxicity of QYS extract were evaluated. The neuroprotective effects of QYS extract were determined in 3XTg AD mice, by using a series of behavioral tests and biochemical assays, and the mechanisms were examined in vitro. RESULTS: Oral administration of QYS extract improved learning and spatial memory, reduced carboxy-terminal fragments (CTFs), amyloid precursor protein (APP), Aß and Tau aggregates, and inhibited microgliosis and astrocytosis in the brains of 3XTg mice. Mechanistically, QYS extract increased the expression of PPARα and TFEB, and promoted ALP both in vivo and in vitro. CONCLUSION: QYS attenuates AD pathology, and improves cognitive function in 3XTg mice, which may be mediated by activation of PPARα-TFEB pathway and the subsequent ALP enhancement. Therefore, QYS may be a promising herbal material for further anti-AD drug discovery.


Assuntos
Doença de Alzheimer , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , PPAR alfa/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas tau
5.
Biomed Pharmacother ; 133: 110968, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189067

RESUMO

Neurodegenerative diseases (NDs) are common chronic diseases related to progressive damage of the nervous system. Globally, the number of people with an ND is dramatically increasing consistent with the fast aging of society and one of the common features of NDs is the abnormal aggregation of diverse proteins. Autophagy is the main process by which misfolded proteins and damaged organelles are removed from cells. It has been found that the impairment of autophagy is associated with many NDs, suggesting that autophagy has a vital role in the neurodegeneration process. Recently, more and more studies have reported that autophagy inducers display a protective role in different ND experimental models, suggesting that enhancement of autophagy could be a potential therapy for NDs. In this review, the evidence for beneficial effects of traditional Chinese medicine (TCM) regulate autophagy in the models of Alzheimer's disease (AD), Parkinson's disease (PD), and other NDs are presented and common autophagy-related mechanisms are identified. The results demonstrate that TCM which regulate autophagy are potential therapeutic candidates for ND treatment.


Assuntos
Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Degeneração Neural , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia
6.
Fitoterapia ; 122: 119-125, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28890177

RESUMO

Seven new lignanamides, lyciumamides D-J (1-4 and 9-11), together with nine known analogues (5-8 and 12-16), were isolated from the root bark of Lycium chinense. The structures of the isolated compounds were elucidated on the basis of NMR spectroscopic and HRESIMS data. All isolated compounds were evaluated for antihyperlipidemic activities in HepG2 cells. The primary structure-activity relationships were discussed.


Assuntos
Hipolipemiantes/farmacologia , Lignanas/farmacologia , Lycium/química , Células Hep G2 , Humanos , Hipolipemiantes/isolamento & purificação , Lignanas/isolamento & purificação , Estrutura Molecular , Casca de Planta/química , Raízes de Plantas/química , Relação Estrutura-Atividade
7.
J Pharm Pharmacol ; 65(5): 757-66, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23600394

RESUMO

OBJECTIVES: To investigate the antidiabetic, antihyperlipidaemic and antioxidant activity of total flavonoids in Selaginella tamariscina (Beauv.) Spring (TFST) in a mouse model of diabetes. METHODS: Normal mice, mice fed with a high-fat emulsion diet and streptozotocin (STZ)-induced diabetic mice were treated with TFST for 6 weeks. Serum glucose, insulin and lipid, hepatic steatosis, production of the protein visfatin and antioxidant indices were evaluated. KEY FINDINGS: TFST significantly decreased the concentration of fasting blood glucose, total cholesterol, triglycerides and low-density-lipoprotein cholesterol, while it increased the levels of insulin and high-density-lipoprotein cholesterol in diabetic mice. TFST also improved the results of the oral glucose tolerance test to a certain degree. Furthermore, both the free fatty acid levels in the liver and hepatic steatosis were ameliorated by TFST treatment. These changes may be be associated with decreased production of visfatin. Administration of TFST also significantly decreased the levels of malondialdehyde, nitric oxide and inducible nitric oxide synthase and increased the content of glutathione and the activity of superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in the liver. No change in blood glucose levels were observed in the normal mice treated with TFST. CONCLUSIONS: TFST showed an excellent effect in reducing the high blood glucose level but had no effect on normal blood glucose level. The antidiabetic activity of TFST could be explained by its antioxidant and antihyperlipidaemic activity, which finally elevated the insulin sensitivity of liver.


Assuntos
Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Fígado Gorduroso/prevenção & controle , Flavonoides/uso terapêutico , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Selaginellaceae/química , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/metabolismo , Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Insulina/sangue , Resistência à Insulina , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos , Nicotinamida Fosforribosiltransferase/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA