Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771046

RESUMO

There are some differences in the anti-inflammatory activities of four typical components in EGB (extracts of ginkgo biloba leaves), and there is also a synergistic relationship. The order of inhibiting the NO-release ability of single functional components is OA > GF > OPC > G. Ginkgolide (G), proanthocyanidins (OPC), and organic acids (OA) all have synergistic effects on ginkgo flavonoids (GF). GF:OA (1:9) is the lowest interaction index among all complexes, showing the strongest synergy. The anti-inflammatory mechanism of the compound affects the expression of p-JNK, p-P38, and p-ERK1/2 proteins by inhibiting the expression of iNOS and COX2 genes on NFKB and MAPK pathways. This also provides a research basis for the development of anti-inflammatory deep-processing products of EGB.


Assuntos
Ginkgo biloba , Extratos Vegetais , Extratos Vegetais/farmacologia , Flavonoides/farmacologia , Ginkgolídeos
2.
Food Res Int ; 156: 111159, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651025

RESUMO

C. oleifera oil is one of the high-quality edible oils recommended by the Food and Agriculture Organization of the United Nations (FAO). Pharmacological studies have shown that C. oleifera oil is the homology of medicine and food, and it possesses extensive beneficial health properties both in vivo and in vitro. C. oleifera oil found its application in the functional food, cosmetic, and pharmaceutical industries. In recent years, the need for high-quality and high-quantity production of C. oleifera oil for human consumption has increased. The present review examines the chemical composition of C. oleifera oil, bioactive substances, extraction technologies, and evidence supporting the health benefits of C. oleifera oil. From the reviewed studies, it appears that C. oleifera oil contains a significant proportion of unsaturated fatty acids (>85%) with oleic acid (>75%) as the major compound, and high contents of squalene, tea polyphenols, tocopherol and phytosterol. Some variations in C. oleifera oil composition can be found depending on the kernel's origin and the extraction method used. Emerging technologies such as aqueous extraction, and supercritical fluid extraction are highly efficient processes, and can achieve higher recovery while reducing solvent and energy consumption. This review provides an in-depth discussion on the various extraction technologies and factors affecting the extraction efficiency of C. oleifera oil using traditional and emerging methods. The influences of different extraction methods on the C. oleifera oil characteristics are also introduced. Furthermore, challenges and future prospects of the extraction of C. oleifera oil have been identified and discussed.


Assuntos
Camellia , Fitosteróis , Camellia/química , Humanos , Óleos de Plantas/química , Polifenóis/química , Tocoferóis
3.
Molecules ; 27(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056751

RESUMO

The predicted anti-oxidation is related to apoptosis, proliferation, lipid metabolism, cell differentiation, and immune response. There are some differences in the antioxidant capacity of the four typical components of ginkgo biloba extract (EGb) including ginkgo flavone (GF), ginkgolide (G), procyanidins (OPC), and organic acids (OA), and any two members of them can exhibit apparent synergistic effects. The order of DPPH scavenging ability was: OPC > GF > OA > G. The scavenging ability of procyanidins was close to that of VC; the scavenging capacity of ABTS was GF > OPC > OA > G. The GF:OPC (1:9) showed the best synergism in scavenging DPPH and ABTS radicals. The 193 kinds of small molecules reported in EGb were obtained by analyzing the properties of EGb. In order to construct a corresponding biological activity target set, molecular docking and the network pharmacology method were employed to build the molecular action mechanism network of a compound target, and the main biological functions and signaling pathways involved with their antioxidant activities were predicted. The results displayed that the top ten compounds which belonged to the two broad categories, ginkgo flavonoids and proanthocyanidins, could interact closely with several important target proteins (CASP3, SOD2, MAPK1, HSPA4, and NQO1). This would be expected to lay a theoretical foundation for the deep development of Ginkgo biloba extract.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Ginkgo biloba/química , Extratos Vegetais/química , Compostos de Bifenilo/química , Sinergismo Farmacológico , Etanol/química , Humanos , Simulação de Acoplamento Molecular , Picratos/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
4.
J Agric Food Chem ; 69(47): 14270-14277, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797654

RESUMO

4'-O-Methylpyridoxine (MPN) and MPN-5'-glucoside (MPNG) are collectively known as ginkgotoxin, which are the main toxic ingredients of excessive consumption of Ginkgo biloba seeds. Water extraction is the generally adopted sample preparation method for high-performance liquid chromatography determination of ginkgotoxin. However, endogenous enzymes such as glycosidases in Ginkgo biloba seeds can hydrolyze MPNG to MPN in the process of water extraction, which will result in the measured contents of MPN and MPNG but not their natural contents in Ginkgo biloba seeds. In this work, inhibitors for the endogenous enzymes were first screened, and it was found that silver fluoride could effectively inhibit endogenous enzymes such as glucosidase and phosphatase. The optimized concentration of silver fluoride was 25 mmol/L, which could effectively inhibit the endogenous enzymes for more than 60 h. A new sample preparation method based on water extraction with 25 mmol/L silver fluoride addition was thus developed. This method was employed to determine the native contents of MPN and MPNG in the exotesta and kernel of five Ginkgo biloba seed cultivars. The result showed that the contents of MPNG in the exotesta and kernel of five cultivars were significantly higher than those of MPN. MPNG was present at high content in raw seeds, which was the main form of ginkgotoxin in seeds. The method established in this work is simple and effective and can be used to accurately quantify the native contents of MPN and MPNG.


Assuntos
Ginkgo biloba , Glucosídeos , Cromatografia Líquida de Alta Pressão , Extratos Vegetais , Piridoxina/análogos & derivados
5.
Molecules ; 23(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563161

RESUMO

Ginkgo biloba leaves have various health benefits due to the presence of bioactive compounds such as polyprenyl acetates, flavonoids, and terpene trilactones. However, there is little literature reported on the aromatic acids in Ginkgo biloba leaves. In this work, five aromatic acids including shikimic acid (SA), 6-hydroxykynurenic acid (6-HKA), protocatechuic acid (PA), gallic acid (GAA), and p-hydroxybenzoic acid (PHBA) were simultaneously extracted from Ginkgo biloba leaves by employing the green deep eutectic solvents (DESs). A DES tailor-made from xylitol, glycolic acid and 1,5-pentanedioic acid at a molar ratio of 1:3:1 with 50% (w/w) water addition, named as NGG50, gave higher extraction yields for the five aromatic acids. Main factors affecting the extraction process were further optimized. The highest extraction yields of SA, GAA, 6-HKA, PA, and PHBA were 94.15 ± 0.96 mg/g, 332.69 ± 5.19 µg/g, 25.90 ± 0.61 µg/g, 429.89 ± 11.47 µg/g and 67.94 ± 0.37 µg/g, respectively. The NGG50-based extraction process developed here was a successful attempt of simultaneously extracting five aromatic acids from Ginkgo biloba leaves for the first time, which could provide a new exploitation direction of Ginkgo biloba leaves.


Assuntos
Ginkgo biloba/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Solventes
6.
Int J Biol Sci ; 14(7): 736-747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910684

RESUMO

To improve the quality of Ginkgo biloba leaves as biological feed additives, twelve Aspergillus niger strains were evaluated for their growth in the moisture ginkgo leaf meal media through solid-state fermentation. The results relating to flavor, flavonoids, enzymes, crude protein, and reducing sugars showed A. niger Gyx086 strain was capable of efficiently fermenting ginkgo leaves. The optimal cultural conditions were three loops of spores inoculation to every 75 g medium containing 60 % water, grew at 28˚C for 48 h. The Gyx086 grew well in the medium. The fermented leaves generated a strong sweet-smelling odor, could be identified by electronic nose equipment using a cluster analysis, other than the original offensive smell from non-fermented ginkgo leaves. Each gram dried culture with Gyx086 showed 2.83 × 109 CFU of A. niger; 3.19 ± 0.37 FPU of acid-resistant filter paper activity. Its total contents of flavonoids, reducing sugars, and crude proteins were 19.95 ± 0.23 mg, 24.28 ± 2.35 mg, and 162.81 ± 3.46 mg in each gram of leaves, 26.03 %, 62.73 %, and 14.58 % higher than the controls, respectively. The essential amino acids and total amino acids contents were 96.41 % and 16.49 % higher than the controls.


Assuntos
Ração Animal , Aspergillus niger/metabolismo , Extratos Vegetais/metabolismo , Fermentação/fisiologia , Flavonoides/metabolismo , Ginkgo biloba
7.
J Agric Food Chem ; 61(24): 5783-91, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23713789

RESUMO

This paper presents a prefermentation treatment method involving fungi to improve flavonoid extraction from the leaves of Ginkgo biloba . The fungi employed for this treatment were screened from the soil present under an ancient ginkgo tree. Seventy-six strains belonging to 23 genera were isolated and identified by a molecular identification method employing 18S rDNA sequences. Thirty-three strains grew well using ginkgo leaves as the growth medium. One strain, Gyx086, with higher extracted yield of flavonoids and more similar to the control, was finally selected for prefermentation processing. The major fermentation factors were optimized by response surface methodology. The optimal conditions for the highest total falvonoid yield were 27.8 °C for temperature, 64.2% for moisture content, and 61 h for fermentation time. Under the optimal condition, a actual total flavonoid yield of 27.59 ± 0.52 mg/g dry weight culture sample was obtained, which was about 70% higher than that of unfermented gingko leaf samples.


Assuntos
Antioxidantes/isolamento & purificação , Suplementos Nutricionais , Flavonas/isolamento & purificação , Fungos/metabolismo , Ginkgo biloba/química , Lignina/metabolismo , Folhas de Planta/química , Antioxidantes/análise , China , Suplementos Nutricionais/análise , Estudos de Viabilidade , Fermentação , Flavonas/análise , Fungos/classificação , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Ginkgo biloba/crescimento & desenvolvimento , Ginkgo biloba/microbiologia , Hidrólise , Lignina/análise , Tipagem Molecular , Técnicas de Tipagem Micológica , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Microbiologia do Solo , Especificidade da Espécie
8.
Bioresour Technol ; 100(23): 5813-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19615896

RESUMO

Dimethyl/diethyl carbonate was adopted as extraction solvent and transesterification reagent at the same time for in situ lipase-catalyzed reactive extraction of oilseeds for biodiesel production in this work. Fatty acid methyl esters and ethyl esters were respectively obtained with higher yields than those achieved by conventional two-step extraction/transesterification. The augment ranged from 15.7% to 31.7%. The key parameters such as solvent/seed ratio and water content were further investigated to find their effects on the in situ reactive extraction. The highest yields of Pistacia chinensis Bunge methyl ester, P. chinensis Bunge ethyl ester, Jatropha curcas L methyl ester and J. curcas L ethyl ester could attain 89.6%, 90.7%, 95.9% and 94.5%, respectively under the optimized conditions.


Assuntos
Carbonatos/química , Lipase/química , Óleos de Plantas/química , Sementes/química , Fontes de Energia Bioelétrica , Biotecnologia/métodos , Catálise , Cromatografia Gasosa , Ésteres/química , Ácidos Graxos/química , Jatropha/metabolismo , Pistacia/metabolismo , Solventes/química , Fatores de Tempo , Água/química
9.
J Biotechnol ; 139(2): 169-75, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19007827

RESUMO

A lipase-producing bacterium K107 was isolated from soil samples of China and identified to be a strain of Proteus sp. With genome-walking method, the open reading frame of lipase gene lipK107, encoding 287 amino acids, was cloned and expressed in a heterologous host, Escherichia coli BL21 (DE3). The recombinant lipase was purified and characterized, and the optimum pH of the purified LipK107 was 9, at 35 degrees C. The recombinant E. coli expressing lipK107 was applied in biodiesel production in the form of whole-cell biocatalyst. Activity of the biocatalyst increased significantly when cells were permeabilized with 0.3% (w/v) cetyl-trimethylammoniumbromide (CTAB). This transesterification was carried out efficiently in a mixture containing 5M equivalents of methanol to the oil and 100% water by weight of the substrate. It was the first time to use E. coli whole-cell biocatalyst expressing lipase in biodiesel production, and the biodiesel reached a yield of nearly 100% after 12h reaction at the optimal temperature of 15 degrees C, which was the lowest temperature among all the known catalyst in biodiesel production.


Assuntos
Reatores Biológicos , Fontes Geradoras de Energia , Escherichia coli/genética , Lipase/genética , Lipase/metabolismo , Proteus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Cetrimônio , Compostos de Cetrimônio/química , China , Clonagem Molecular , Escherichia coli/metabolismo , Esterificação , Concentração de Íons de Hidrogênio , Lipase/química , Metanol/metabolismo , Dados de Sequência Molecular , Óleos de Plantas/metabolismo , Proteus/genética , Proteus/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Microbiologia do Solo , Temperatura , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA