Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3907-3914, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472267

RESUMO

To evaluate the therapeutic effect of Potentilla discolor on 2,4,6-trinitrobenzensulfonic acid(TNBS)-induced experimental ulcerative colitis(UC) in rats and to determine its therapeutic mechanism through mitochondrial autophagy, immune cells, and cytokines. A rat model of UC was established by TNBS-ethanol enema. Rats were divided into six groups: control, UC model, sulfasalazine(positive drug), and high-dose, moderate-dose, and low-dose ethanol extract groups. After 14-day continuous administration of the corresponding drugs, the disease activity index(DAI) and hematoxylin and eosin(HE) were evaluated. The morphological structure of mitochondria was observed by using transmission electron microscope(TEM), mitophagy-related mRNA expression was detected by using Real-time quantitative polymerase chain reaction(qRT-PCR), immune cell differentiation in rat serum was detected by using flow cytometry(FCM), and cytokine expression in colon tissues of rats was detected by protein microarray. The results showed that compared with the model group, each dose group of P. discolor could significantly reduce the DAI of UC model rats, and decrease the degree of inflammatory cells infiltration in the colon tissue of UC model rats. Meanwhile the expressions of T cells and Th cells in the serum increased significantly, the expression of Tc cells in the serum decreased significantly. Transmission electron microscope found that there was fusion of mitochondria and lysosomes in the colon tissue of the administration group. The expressions of mitochondrial autophagy related genes NF-κB, p62 and parkin were significantly increased in colon tissues. The results of protein chip showed that compared with the model group, the high dose group of P. discolor could significantly regulate the expression of cytokines. In conclusion, these results suggested that P. discolor improved TNBS-induced acute ulcerative colitis in rats by regulating the mitochondrial autophagy and the inflammatory factor expression.


Assuntos
Colite Ulcerativa , Potentilla , Animais , Autofagia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colo , Mitocôndrias , Potentilla/genética , Ratos
2.
Ying Yong Sheng Tai Xue Bao ; 32(5): 1863-1872, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34042383

RESUMO

Microbial mineralization of organic phosphorus is an important component of marine phosphorus cycle. The research on organic phosphate-mineralizing bacteria (OPB) is helpful to reveal microbial driving mechanism of organic phosphorus mineralization in eutrophic sea area. The diversity and community characteristics of OPB were examined by Illumina high-throughput sequencing using the primer sets phoX in the sea area between Minjiang Estuary to Pingtan in April (spring) and July (summer) 2019. The results showed that the Shannon index of OPB in the surface seawater samples ranged from 3.21 to 7.91, and that the diversity at each station was greater in spring than that in summer. Shannon index of OPB in the sediment samples ranged from 2.04 to 8.70, which was greater in summer than that in spring. Shannon index of OPB in surface seawater of each station was higher than that of sediment in spring, while it was in adverse in summer. Nine phyla of OPB were detected in surface seawater, with Proteobacteria and Cyanobacteria being the most abundant. Tweleve phyla of OPB were detected in the sediments, with Proteobacteria and Bacteroidetes being the most dominant. OPB community composition at the genus level showed obvious spatio-temporal variation. Leisingera, Phaeobacter, Thalassococcus, and Pseudomonas were the major genera in the seawater in spring, while Synechococcus, Halioglobus, Roseovarius, Phaeo-bacter, Sulfitobacter, and Hyphomonas were the major genera detected in summer. Leisingera, Phaeobacter, Vibrio, and Sulfitobacter were major genera in the sediment in spring, while Azospirillum, Aminobacter, Sulfurifustis, Burkholderia, and Thiohalobacter were the major genera in summer. A large number of unclassified OPB were detected in both surface seawater and sediment. The redundancy analysis results showed that dissolved oxygen, water temperature, pH, dissolved inorganic nitrogen, NO2--N, and NO3--N had great influences on community distribution of OPB in the surface seawater. The abundant OPB in the surface seawater and sediment might play an important role in phosphorus cycle in this sea area.


Assuntos
Estuários , Sedimentos Geológicos , China , Organofosfatos , Fósforo/análise , Água do Mar
3.
Ying Yong Sheng Tai Xue Bao ; 30(7): 2393-2403, 2019 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-31418243

RESUMO

Polyphosphate accummulating organisms (PAOs) play an important role in the phosphorus metabolic cycling in the sediment of reservoir. We assessed the diversity and community structure of PAOs in the sediments by T-RFLP and clone sequencing which targeted ppk1 gene at the hearts of three reservoirs (Jiulongjiangxipi reservoir, Sanshiliujiao lake reservoir and Dongyaxi reservoir) in Fujian Province. The results showed that the diversity of PAOs varied among different reservoirs, though not statistically significant. The diversity of PAOs in the Sanshiliujiao lake reservoir was highest (Shannon index H=2.89±0.03, Simpson index D=0.06±0.01). The community structure of the PAOs in the Sanshiliujiao lake reservoir was most complicated, consistent with the results of the T-RFLP. The differences of dominant PAOs genera in three reservoirs were distinct, mainly concentrated in the Proteobacteria, Actinobacteria and Acidobacteria. The percentage of those three phylum accounted for 74.5%, 85.0% and 75.0%, respectively, of the total PAOs. The dominant groups in each reservoir sediment were Anaeromyxobacter and Solibacter. Various forms of phosphorus had certain influence on the diversity of PAOs. There were significantly correlation between Fe/Al-P and PAOs diversity and community structure. The dominant genus in the three reservoirs, Anaeromyxobacter, was positively correlated with all forms of phosphorus and significantly correlated with insoluble phosphorus such as OP and Ca-P, while Solibacter was negatively correlated with all forms of phosphorus. The results suggested that PAOs had important impacts on the phosphorus cycle of sediment in eutrophicatied reservoirs.


Assuntos
Sedimentos Geológicos/microbiologia , Lagos , Polifosfatos/metabolismo , China , Fósforo
4.
J Cell Physiol ; 232(10): 2741-2749, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28218386

RESUMO

Osteoarthritis (OA) is currently still an irreversible degenerative disease of the articular cartilage. Recent, dextrose (d-glucose) intraarticular injection prolotherapy for OA patients has been reported to benefit the chondrogenic stimulation of damaged cartilage. However, the detailed mechanism of glucose's effect on cartilage repair remains unclear. Chitosan, a naturally derived polysaccharide, has recently been investigated as a surgical or dental dressing to control breeding. Therefore, in this study, glucose was adsorbed to chitosan membranes (CTS-Glc), and the study aimed to investigate whether CTS-Glc complex membranes could regulate the proliferation of human OA chondrocytes and to explore the underlying mechanism. Human OA and SW1353 chondrocytes were used in this study. The experiments involving the transfection of cells used SW1353 chondrocytes. A specific inhibitor and siRNAs were used to investigate the mechanism underlying the CTS-Glc-regulated proliferation of human chondrocytes. We found that CTS-Glc significantly increased the proliferation of both human OA and SW1353 chondrocytes comparable to glucose- or chitosan-only stimulation. The role of mammalian target of rapamycin complex 1 (mTORC1) signaling, including mTOR, raptor, and S6k proteins, has been demonstrated in the regulation of CTS-Glc-increased human chondrocyte proliferation. mTORC1 signaling increased the expression levels of maturated SREBP-1 and FASN and then induced the expressions of cell cycle regulators, that is, cyclin D, cyclin-dependent kinase-4 and -6 in human chondrocytes. This study elucidates the detailed mechanism behind the effect of CTS-Glc complex membranes in promoting chondrocyte proliferation and proposes a possible clinical application of the CTS-Glc complex in the dextrose intraarticular injection of OA prolotherapy in the future to attenuate the pain and discomfort of OA patients.


Assuntos
Antirreumáticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Quitosana/farmacologia , Condrócitos/efeitos dos fármacos , Glucose/farmacologia , Membranas Artificiais , Complexos Multiproteicos/metabolismo , Osteoartrite/tratamento farmacológico , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adsorção , Idoso , Antirreumáticos/química , Técnicas de Cultura de Células , Linhagem Celular , Quitosana/química , Condrócitos/enzimologia , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Glucose/química , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Osteoartrite/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Proteína Regulatória Associada a mTOR , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Fatores de Tempo , Transfecção , Homólogo LST8 da Proteína Associada a mTOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA