Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 2): 129615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246437

RESUMO

To preserve the viability of probiotics during digestion and storage, encapsulation techniques are necessary to withstand the challenges posed by adverse environments. A core-shell structure has been developed to provide protection for probiotics. By utilizing sodium alginate (SA) / Lycium barbarum polysaccharide (LBP) as the core material and chitosan (CS) as the shell, the probiotic load reached 9.676 log CFU/mL. This formulation not only facilitated continuous release in the gastrointestinal tract but also enhanced thermal stability and storage stability. The results obtained from Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed that the addition of LBP and CS affected the microstructure of the gel by enhancing the hydrogen bond force, so as to achieve controlled release. Following the digestion of the gel within the gastrointestinal tract, the released amount was determined to be 9.657 log CFU/mL. The moisture content and storage stability tests confirmed that the encapsulated Lactiplantibacillus plantarum maintained good activity for an extended period at 4 °C, with an encapsulated count of 8.469 log CFU/mL on the 28th day. In conclusion, the newly developed core-shell gel in this study exhibits excellent probiotic protection and delivery capabilities.


Assuntos
Quitosana , Medicamentos de Ervas Chinesas , Probióticos , Alginatos/química , Quitosana/química , Viabilidade Microbiana , Géis , Probióticos/química
2.
Int J Biol Macromol ; 249: 126117, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541481

RESUMO

Kidney tea saponin (KTS) exhibits considerable efficacy in lowering glucose levels; however, it does not have widespread applications owing to its low intestinal utilization. Therefore, in the present study, we prepared sodium alginate (SA)/sodium hyaluronate (HA)/hydrolyzed silk (SF) gel beads for the effective encapsulation and targeted intestinal release of KTS. The gel beads exhibited an encapsulation rate of 90.67 % ± 0.27 % and a loading capacity of 3.11 ± 0.21 mg/mL; furthermore, the release rate of KTS was 95.46 % ± 0.02 % after 8 h of simulated digestion. Fourier transform infrared spectroscopy revealed that the hydroxyl in SA/HA/SF-KTS was shifted toward the strong peak; this was related to KTS encapsulation. Furthermore, scanning electron microscopy revealed that the gel bead space network facilitates KTS encapsulation. In addition, the ability of KTS and the gel beads to inhibit α-amylase (IC50 = 0.93 and 1.37 mg/mL, respectively) and α-glucosidase enzymes (IC50 = 1.17 and 0.93 mg/mL, respectively) was investigated. In vitro colonic fermentation experiments revealed that KTS increased the abundance of Firmicutes/Bacteroidetes and butyric acid-producing bacteria. The study showed that the developed gel-loading system plays a vital role in delivering bioactive substances, achieving slow release, and increasing the abundance and diversity of intestinal flora.


Assuntos
Alginatos , Microbioma Gastrointestinal , Humanos , Alginatos/química , Preparações de Ação Retardada/farmacologia , Ácido Hialurônico , Seda , Chá , Rim , Ácidos Hexurônicos/química , Ácido Glucurônico/química
3.
J Sci Food Agric ; 103(11): 5376-5387, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37060319

RESUMO

BACKGROUND: Black garlic (Allium sativum L.) melanoidins (MLDs) are produced by Maillard reaction under high temperature and high humidity, and has a variety of biological activities. The aim of this study was to analyze the structural characteristics and investigate α-amylase and α-glucosidase in vitro inhibitory activity of black garlic MLDs. RESULTS: Spectroscopic and chemical analysis revealed that black garlic MLDs were heterogeneous macromolecular polymers with a skeletal structure similar to sugar chains. Molecular weight distribution and 3DEEM fluorescence showed that black garlic MLDs were composed of high-molecular-weight colorants with strong fluorescence properties. The polarity of black garlic MLDs was related to the fluorescence groups. The results of physicochemical properties proved that the polarity difference of black garlic MLDs was related to the elemental composition, resulting in differences in fluorescence, thermodynamic and apparent characteristics. MLDs with higher levels of fluorescent intensity (BG20 and BG40) had stronger inhibitory effects on α-amylase and α-glucosidase than BGW, and hydrolysis of fluorescent groups attenuated the inhibitory activity. The median inhibitory concentration (IC50 ) of black garlic MLDs against enzymes was positively correlated with the concentration, and the kinetic results detected non-competitive and mixed types of inhibition. CONCLUSION: High-molecular-weight fluorescent components of black garlic MLDs played a crucial role in the inhibitory activities of α-amylase and α-glucosidase, and the inhibitory ability was positively correlated with concentration. Black garlic MLDs had the potential to block postprandial glucose rise. © 2023 Society of Chemical Industry.


Assuntos
Alho , Alho/química , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Fenômenos Químicos
4.
Foods ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36613440

RESUMO

Peptide iron chelate is widely regarded as one of the best iron supplements for relieving iron deficiency. In this study, a new type of walnut peptide iron (WP-Fe) chelate was prepared using low molecular weight walnut peptides (WP) as raw materials. Under the conditions of this study, the chelation rate and iron content of the WP-Fe chelate were 71.87 ± 1.60% and 113.11 ± 2.52 mg/g, respectively. Fourier transform infrared spectroscopy (FTIR), zeta potential, amino acid composition, and other structural analysis showed that WP-Fe is formed by the combination of carboxyl, amino and carbonyl with Fe2+. The WP-Fe chelate exhibits a honeycomb-like bulk structure different from that of WP. In addition, we predicted and established the binding model of ferrous ion and WP by molecular docking technology. After chelation, the free radical scavenging ability of the WP-Fe chelate was significantly higher than that of the WP. Overall, the WP-Fe chelate has high iron-binding capacity and antioxidant activity. We believe that peptides from different sources also have better iron binding capacity, and peptide iron chelates are expected to become a promising source of iron supplement and antioxidant activities.

5.
Food Chem ; 399: 133912, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029677

RESUMO

Iron deficiency anemia (IDA) is a common nutritional disease affecting 2 billion people. To develop a new iron-fortified food, we designed a novel type of iron-chelating peptide [Sea cucumbers peptides (SCP)-Fe] from sea cucumbers. SCP can chelate ferrous ions. The neutral protease hydrolysate have the highest iron chelating activity (117.17 ± 2.62 mg/g). Single factors including pH, material ratio, and molecular weight, had a significant effect on the iron chelating activity. The characterization of the SCP-Fe chelate revealed a loose and blocky structure with increased particle size. The amino acid composition, peptide identification and molecular docking indicated that Asp, Glu, Gly and Pro played an important role in binding to ferrous ions. After chelation, SCP-Fe chelate had dual nutrition effects of stronger radical scavenging ability and potential high-efficiency iron supplementation ability. These results might provide insights into the methods for developing functional foods such as iron-fortified seafood.


Assuntos
Pepinos-do-Mar , Animais , Antioxidantes/química , Humanos , Íons , Ferro/química , Quelantes de Ferro/química , Simulação de Acoplamento Molecular , Peptídeos/química , Pepinos-do-Mar/química
6.
Food Res Int ; 156: 111155, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651021

RESUMO

In the current study, the effects of heat-moisture treatment on the ginsenoside contents and ginsenoside compositions such as Rg3, CK and Rb1 etc. were investigated at different temperatures, relative humidities (RHs) and treatment times. Our findings demonstrated that the highest total ginsenoside content was 7.48% after 12 days treatment at temperature 80 °C and RH 75%. Correspondingly, less polar ginsenosides Rg3 and CK were accumulated increasingly from 0.88 mg/g and 0.84 mg/g to 7.30 mg/g and 15.08 mg/g, respectively, during heat-moisture treatment. Compared to the ginsenoside extracts of untreated ginseng (UGE), the ginsenoside extracts of heat-moisture treated ginseng (HMGE) exerted better scavenging activities of 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation (ABTS+), and hydroxyl (OH) radicals, as well as higher cytotoxicity efficiency against HepG2. In addition, HMGE promoted cell apoptosis by up-regulating the related protein expression, especially the caspase-3, caspase-9, and poly (ADP-ribose) polymerase (PARP). Therefore, the cytotoxicity of HMGE against HepG2 cells may be due to the mitochondrial apoptosis pathway induced by up-regulated caspase. These results strongly proved the promising prospect of HMGE as functional food or ingredient in nourishing or disease chemoprevention.


Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/farmacologia , Células Hep G2 , Temperatura Alta , Humanos , Panax/química , Extratos Vegetais
7.
Food Res Int ; 153: 110945, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35227470

RESUMO

Previous studies suggested that licorice possessed hypoglycemic activity, but its anti-diabetic mechanism has not been clearly illustrated. Herein, we aimed to investigate the hypoglycemic activity and underlying hypoglycemic mechanisms of licorice extract (20, 40, and 80 mg kg-1day-1) in type 2 diabetes mice. The results showed that licorice extract could improve the levels of fasting blood glucose, insulin resistance, serum lipids, and endotoxemia-related colonic inflammation in diabetic mice in a dose-dependent manner. Western blots also suggested that a high-dose licorice extract could effectively decrease the levels of nuclear factor kappa-B (NF-κB), toll-like receptor 4 (TLR4), and tumor necrosis factor-α (TNF-α) in colon of diabetic mice. More importantly, all the doses of licorice extract reshaped the gut microbiota by decreasing the contents of Lachnospiraceae_NK4A136_group at the genus level and increasing the contents of Alloprevotella, Bacteroides, and Akkermansia, especially for the high-dose of licorice extract. These results indicated that the anti-diabetic effect of licorice extract might be attributed to the regulation of the gut microbiota and the colon TLR4/NF-κB signaling pathway in diabetic mice. Thus, licorice extract can be a promising dietary agent to improve type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Glycyrrhiza , Hiperglicemia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glycyrrhiza/metabolismo , Hiperglicemia/tratamento farmacológico , Camundongos , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
8.
J Agric Food Chem ; 69(10): 3069-3081, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661003

RESUMO

The purpose of this study is to explore the effects of different molecular weight black garlic melanoidins (MLDs) on high fat diet (HFD) induced dysrhythmia of intestinal microorganisms. The results showed that a HFD disturbed the periodic fluctuation of the gut microbiome and that oral gavage of low molecular weight melanoidin (LMM) or high molecular weight melanoidin (HMM) reversed these cyclical variations in part, which resulted in an increase in the number of bacteria producing short-chain fatty acids (SCFAs) and a decrease in the oscillation of inflammation-related bacteria within a specific time period over the course of 1 day. Moreover, structural analysis showed different structure characterizations of LMM and HMM, which are related to the differences in flora oscillation. Therefore, the data showed that LMM and HMM relieve the circadian rhythm disorder of intestinal microbiota induced by a HFD in mice, which supported the further study of MLDs as a new dietary assistant strategy to improve chronic diseases.


Assuntos
Disbiose , Alho , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Polímeros
9.
Food Funct ; 11(11): 9585-9598, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33151233

RESUMO

The objective of this study is to assess the potential anti-obesity effects of black garlic melanoidins (MLDs) and gut microbiota changes in an animal model, hypothesizing that the effects of oral administration of MLDs can be partially mediated by the modulation of intestinal microbiota via inhibiting the formation of lipopolysaccharides (LPS) and promoting the production of short-chain fatty acids (SCFAs). The effects of MLDs in C57BL/6J mice with high-fat diet (HFD)-induced obesity were investigated for 12 weeks with low (50 mg kg-1 day-1), medium (100 mg kg-1 day-1) and high (200 mg kg-1 day-1) doses. The results indicated that oral administration of MLDs markedly reduced high fat diet-induced weight gain and white adipose tissue weights and reversed glucose tolerance, especially at high doses. Besides, MLDs could alleviate dyslipidaemia, significantly suppress hepatic lipid accumulation and steatosis and effectively ameliorate lipid metabolism. The plasma LPS reduced significantly and the SCFAs increased in a dose-dependent manner. The MLDs could down-regulate the expression of fatty acid synthase (FAS) and interleukin-6 (IL-6) and up-regulate the expression of adipose triacylglyceride lipase (ATGL) and hormone sensitive lipase (HSL) in adipose tissues and livers at mRNA levels. Moreover, after the oral administration of MLDs, the intestinal microbial environment improved in the sense that bacterial diversity and richness increased. Intervention with MLDs modified the gut microbiota in mice with HFD-induced obesity, increasing the number of SCFA-producing bacteria (Bacteroidaceae) and reducing opportunistic pathogens (Enterobacteriaceae and Desulfovibrionaceae). An increased abundance of other probiotics including Lactobacillaceae and Akkermansiaceae was also observed. In conclusion, MLDs could improve glucose tolerance, induce the production of SCFAs and inhibit the production of endotoxin LPS, most likely mediated by modulating the gut microbiota. Therefore, it seems that MLDs exhibit anti-obesity effects and might be used as potential agents against obesity.


Assuntos
Dieta Hiperlipídica , Alho , Obesidade/prevenção & controle , Polímeros/uso terapêutico , Administração Oral , Animais , Alimento Funcional , Microbioma Gastrointestinal/efeitos dos fármacos , Lipopolissacarídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Polímeros/administração & dosagem , Polímeros/farmacologia
10.
J Agric Food Chem ; 68(16): 4632-4640, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32237746

RESUMO

Bifidobacterium longum is considered as a potential supplement in antiobesity treatment; however, the underlying molecular mechanism has rarely been studied. To understand the contributions of B. longum subsp. longum (BL21) in the prevention of obesity, we investigated alterations in the liver metabonomic phenotype and gut microbiota by ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and 16S ribosomal RNA gene sequencing in C57BL/6J male mice orally administered with BL21 for 8 weeks [high-fat diet (HFD)]. BL21 at 1 × 109 CFU·day-1 per mouse reduced the weight of mice by 16.9% relative to that of the mice fed with HFD and significantly lowered the serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol. BL21 also ameliorated fat vacuolization in liver cells and epididymal fat accumulation. BL21 also lowered the Firmicutes/Bacteroidetes ratio, regulated liver remodeling in glycerophospholipids, and alleviated the levels of d-tryptophan. A positive correlation between the butyrate-producing strain Roseburia and the cell membrane component phosphatidylserine was found for the first time. Thus, BL21 can potentially prevent mice from being obese by rebalancing the gut microbiota and glycerophospholipid metabolism. BL21 can be a promising dietary supplement for weight control.


Assuntos
Bifidobacterium/fisiologia , Microbioma Gastrointestinal , Fígado/metabolismo , Obesidade/tratamento farmacológico , Fosfatidilserinas/metabolismo , Probióticos/administração & dosagem , Animais , Butiratos/metabolismo , Clostridiales/crescimento & desenvolvimento , Clostridiales/metabolismo , Dieta Hiperlipídica/efeitos adversos , Firmicutes/crescimento & desenvolvimento , Firmicutes/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/microbiologia , Triglicerídeos/sangue
11.
Food Res Int ; 128: 108774, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31955744

RESUMO

The present study investigated the anti-obesity effects and its mechanism of capsanthin (CAP) in high-fat diet-induced obese C57BL/6J mice. Compared with untreated mice on a high-fat diet for 12 weeks, CAP at 200 mg kg-1 reduced the body weight by 27.5%, significantly reversed glucose tolerance, effectively decreased the serum triglycerides, total cholesterol, low-density lipoprotein cholesterol, and trimethylamine N-oxide levels, markedly increased microbial diversity. Furthermore, 16S rRNA gene sequencing of the cecal microbiota suggested that CAP increased the abundance of Bacteroidetes, Bifidobacterium and Akkermansia, decreased the abundance of Ruminococcus and the ratio of Firmicutes/Bacteroidetes. Moreover, predicted functional domain analysis indicated that CAP increased the gene abundance of replication and repair, and decreased the gene abundance of membrane transports and carbohydrate metabolisms. Therefore, it seems CAP exhibit anti-obesity effect and might be used as a potential agent against obesity.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Metilaminas/sangue , Obesidade/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/sangue , Extratos Vegetais/sangue , Xantofilas/sangue , Xantofilas/farmacologia
12.
Food Res Int ; 108: 151-160, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735044

RESUMO

This article reports caloric value changes, stability and rheological properties of mayonnaises affected by fat mimetic based on Microparticulated whey protein (MWP) and high-methoxy pectin. Lipid was partially substituted at different levels of 20%, 40%, 60%, 80% and 100%, and the samples were referred to as FM20, FM40, FM60, FM80 and FFM, respectively. The full fat (FF) mayonnaise was used as a control experiment. For rheological properties, the addition of fat mimetic resulted in the gradual decrease of pseudoplastic behavior, relative thixotropic area and viscosity index, while elasticity index exhibited the opposite trend. After 30 days of storage, all mayonnaises except FM20 were categorized as weak gels under oscillatory tests, while FM20 displayed high storage stability. Long-term stability studies showed that the addition of the fat mimetic up to 60% could significantly enhance the storage stability of mayonnaises by preventing the coalescence and flocculation of the droplets. Both the dynamic mechanical measurement and stability study results suggested that MWP and pectin could be a potential fat mimetic used in mayonnaise.


Assuntos
Condimentos/análise , Dieta com Restrição de Gorduras , Substitutos da Gordura/química , Manipulação de Alimentos/métodos , Pectinas/química , Proteínas do Soro do Leite/química , Cor , Dieta Saudável , Ingestão de Energia , Floculação , Análise de Alimentos , Armazenamento de Alimentos , Géis , Humanos , Valor Nutritivo , Odorantes , Percepção Olfatória , Tamanho da Partícula , Reologia , Paladar , Percepção Gustatória , Fatores de Tempo , Viscosidade
13.
Food Funct ; 9(4): 2112-2120, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632909

RESUMO

Evidence indicates that raspberries have beneficial effects on chronic diseases. The objective of this study was to examine the beneficial effects of raspberry anthocyanin (RA) on high fat diet-induced obesity and investigate the underlying molecular mechanism. C57BL/6 mice were administered a low-fat diet, high-fat diet, and high-fat diet supplemented with RA at a dose of 200 mg kg-1 of food for 12 weeks. It was found that RA reduced the body weight gain by 63.7%. Furthermore, RA significantly elevated serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities and fecal butyric acid level, remarkably reduced the serum and hepatic lipid profiles, and markedly down-regulated the expression of the tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and nuclear factor κB (NF-κB) genes. Metabolomics analysis conducted using gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) indicated that RA administration promoted the recovery of metabolites involved in glycerophospholipid metabolism, insulin signaling pathway, and glutathione metabolism in the livers of obese mice. These findings suggest that RA may ameliorate diet-induced obesity by alleviating oxidative stress and modulating lipid metabolism.


Assuntos
Antocianinas/uso terapêutico , Fármacos Antiobesidade/uso terapêutico , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Fígado/metabolismo , Obesidade/prevenção & controle , Rubus/química , Animais , Antocianinas/isolamento & purificação , Fármacos Antiobesidade/isolamento & purificação , Antioxidantes/isolamento & purificação , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/metabolismo , Ácido Butírico/análise , Dieta Hiperlipídica/efeitos adversos , Fezes/química , Feminino , Frutas/química , Regulação da Expressão Gênica , Hiperlipidemias/etiologia , Hiperlipidemias/imunologia , Hiperlipidemias/metabolismo , Hiperlipidemias/prevenção & controle , Hipolipemiantes/isolamento & purificação , Hipolipemiantes/uso terapêutico , Metabolismo dos Lipídeos , Fígado/imunologia , Metabolômica/métodos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/imunologia , Obesidade/metabolismo , Estresse Oxidativo , Distribuição Aleatória
14.
Sheng Wu Gong Cheng Xue Bao ; 30(6): 801-15, 2014 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-25211999

RESUMO

The resource limitation, ineffective utilization and severe waste generated during processing restrict the sustainable development of the Chinese herbal medicine industry. The main reasons lie in insufficient utilization of medicinal components as well as few and outdated technologies. Integration and optimization of serial technologies including pretreatment, extraction, conversion and waste treatment are the keys to solve these issues. In this article, the updated research progress and technology development of biorefinery engineering for herbal medicines are reviewed. Guided by multi-products oriental fractionation refining, Chinese herbal medicine refinery technical system is constructed relied on advanced refinery technology platforms.


Assuntos
Bioengenharia , Medicamentos de Ervas Chinesas/química , Fracionamento Químico , Química Farmacêutica , Medicina Tradicional Chinesa , Plantas Medicinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA