Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells ; 12(23)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067099

RESUMO

BACKGROUND: Gliomas are the most malignant tumors of the central nervous system. One of the factors in their high drug resistance is avoiding programmed death (PCD) induction. This is related to the overexpression of intracellular survival pathways: PI3K-Akt/PKB-mTOR and Ras-Raf-MEK-ERK. Apoptosis and autophagy are co-existing processes due to the interactions between Bcl-2 and beclin-1 proteins. Their complex may be a molecular "toggle-switch" between PCD types. The aim of this research was to investigate the role of Bcl-2:beclin-1 complex in glioma cell elimination through the combined action of LY294002 and sorafenib. METHODS: Drug cytotoxicity was estimated with an MTT test. The type of cell death was evaluated using variant microscopy techniques (fluorochrome staining, immunocytochemistry, and transmission electron microscopy), as well as the Bcl-2:beclin-1 complex formation and protein localization. Molecular analysis of PCD indicators was conducted through immunoblotting, immunoprecipitation, and ELISA testing. SiRNA was used to block Bcl-2 and beclin-1 expression. RESULTS: The results showed the inhibitors used in simultaneous application resulted in Bcl-2:beclin-1 complex formation and apoptosis becoming dominant. This was accompanied by changes in the location of the tested proteins. CONCLUSIONS: "Switching" between apoptosis and autophagy using PI3K and Raf inhibitors with Bcl-2:beclin-1 complex formation opens new therapeutic perspectives against gliomas.


Assuntos
Glioma , Fosfatidilinositol 3-Quinases , Sorafenibe , Humanos , Apoptose , Autofagia , Proteína Beclina-1 , Glioma/tratamento farmacológico , Glioma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
2.
Molecules ; 25(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171577

RESUMO

Coumarins, which occur naturally in the plant kingdom, are diverse class of secondary metabolites. With their antiproliferative, chemopreventive and antiangiogenetic properties, they can be used in the treatment of cancer. Their therapeutic potential depends on the type and location of the attachment of substituents to the ring. Therefore, the aim of our study was to investigate the effect of simple coumarins (osthole, umbelliferone, esculin, and 4-hydroxycoumarin) combined with sorafenib (specific inhibitor of Raf (Rapidly Accelerated Fibrosarcoma) kinase) in programmed death induction in human glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cells lines. Osthole and umbelliferone were isolated from fruits: Mutellina purpurea L. and Heracleum leskowii L., respectively, while esculin and 4-hydroxycoumarin were purchased from Sigma Aldrich (St. Louis, MO, USA). Apoptosis, autophagy and necrosis were identified microscopically after straining with specific fluorochromes. The level of caspase 3, Beclin 1, PI3K (Phosphoinositide 3-kinase), and Raf kinases were estimated by immunoblotting. Transfection with specific siRNA (small interfering RNA) was used to block Bcl-2 (B-cell lymphoma 2), Raf, and PI3K expression. Cell migration was tested with the wound healing assay. The present study has shown that all the coumarins eliminated the MOGGCCM and T98G tumor cells mainly via apoptosis and, to a lesser extent, via autophagy. Osthole, which has an isoprenyl moiety, was shown to be the most effective compound. Sorafenib did not change the proapoptotic activity of this coumarin; however, it reduced the level of autophagy. At the molecular level, the induction of apoptosis was associated with a decrease in the expression of PI3K and Raf kinases, whereas an increase in the level of Beclin 1 was observed in the case of autophagy. Inhibition of the expression of this protein by specific siRNA eliminated autophagy. Moreover, the blocking of the expression of Bcl-2 and PI3K significantly increased the level of apoptosis. Osthole and sorafenib successfully inhibited the migration of the MOGGCCM and T98G cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cumarínicos/farmacologia , Glioblastoma/tratamento farmacológico , Magnoliopsida/química , Extratos Vegetais/farmacologia , Sorafenibe/farmacologia , 4-Hidroxicumarinas/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Esculina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Necrose/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/metabolismo , Umbeliferonas/farmacologia , Quinases raf/metabolismo
3.
Fitoterapia ; 142: 104492, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32032635

RESUMO

Furanocoumarins are a class of natural compounds produced by several plants, including those consumed by humans. They have been used medicinally in eastern countries for ages. Given the growing body of evidence about their anticancer potential and observations that naturally occurring compounds potentiate the antitumor activity of chemotherapeutics, more attention is paid to elucidation of the nature of furanocoumarins and the possibility of using thereof in practice. The general mechanism by which furanocoumarins eliminate cancer cells is based on cell cycle blockage and initiation of programmed death like apoptosis or autophagy. The precise molecular mechanism of such an action depends on the chemical structure of furanocoumarins, which is based on the furan ring attached to the coumarin backbone in a linear or angular form as well as the type, location, and number of the substituents attached. The review summarizes the current evidence of the antitumor properties of linear and angular furanocoumarins with special emphasis on the molecular mechanism of elimination of cancer cells via apoptosis and autophagy. Negative aspects of the use of coumarins in anticancer therapy will be also discussed especially in the context of their phototoxicity and potential cancerogenic effect.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Furocumarinas/química , Furocumarinas/farmacologia , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA