Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 151: 108393, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36739701

RESUMO

As an emerging versatile technology for separating uranium from uranium-containing wastewater (UCW), microbial fuel cell (MFC) offers a novel approach to UCW treatment. Its cathode is essential for the treatment of UCW. To thoroughly investigate the efficacy of MFC in treating UCW, investigations were conducted using MFCs with five materials (containing iron sheet (IP), stainless steel mesh (SSM), carbon cloth (CC), carbon brush (CB), and nickel foam (NF)) as cathodes. The results revealed that each MFC system performed differently in terms of carbon source degradation, uranium removal, and electricity production. In terms of carbon source degradation, CB-MFC showed the best performance. The best uranium removal method was NF-MFC, and the best electricity production method was carbon-based cathode MFC. Five MFC systems demonstrated stable performance and consistent difference over five cycles, with CC-MFC outperforming the others. Furthermore, SEM and XPS characterization of the cathode materials before and after the experiment revealed that a significant amount of U(IV) was generated during the uranium removal process, indicating that uranium ions were primarily removed by electrochemical reduction precipitation. This study confirmed that abiotic cathode MFC had a high UCW removal potential and served as a good guideline for obtaining the best cathode for MFC.


Assuntos
Fontes de Energia Bioelétrica , Urânio , Águas Residuárias , Eletricidade , Carbono , Eletrodos , Níquel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA