Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(49): 54423-54430, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36455139

RESUMO

The chemical toxicity and the oxidative stress induced by the internal exposure of uranium is responsible for the long-term adverse effect of in vivo contamination of uranium. An agent with simultaneous removal capability of uranium and excess reactive oxygen species (ROS) is highly desired. Herein, the lacunary Keggin-type polyoxometalate (POM) is demonstrated to selectively bind with uranyl ions in the presence of excess essential divalent ions and exhibits a compelling ROS scavenging efficiency of 78.8%. In vivo uranium decorporation assays illustrate the uranium sequestration efficiencies of 74.0%, 49.4%, and 37.1% from kidneys by prophylactic, prompt, and delayed administration of lacunary POM solution, respectively. The superior ROS quenching and uranium removal performance in comparison with all reported bifunctional agents endow lacunary polyoxometalates as novel agents to effectively protect people from injuries caused by the internal exposure of actinides.


Assuntos
Urânio , Humanos , Urânio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rim/metabolismo , Íons/metabolismo
2.
Dalton Trans ; 51(34): 13055-13060, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35971987

RESUMO

With the extensive usage of gadolinium-based contrast agents (GBCAs) in magnetic resonance imaging (MRI), gadolinium deposition has been observed in the brain, kidneys, liver, etc., and this is also closely related to the development of nephrogenic systemic fibrosis (NSF) in patients with renal dysfunction. Chelation, thereby promoting the elimination of deposited Gd(III), seems to be promising for alleviating these problems. Despite many ligands suitable for chelation therapy having been studied, the decorporation of transition metals (e.g. iron, copper, lead, etc.) and actinides (e.g. uranium, plutonium, etc.) has long been a primary concern, whereas the study of Gd(III) has been extremely limited. Due to their excellent metal binding abilities in vivo and therapeutic effects toward neurodegenerative diseases, bidentate hydroxypyridinone ligands are expected to be able to remove Gd(III) from the brain, kidneys, bones, and liver. Herein, the Gd(III) decorporation efficacy of a bidentate hydroxypyridinone ligand (Me-3,2-HOPO) has been evaluated. The complexation behavior between Me-3,2-HOPO and Gd(III) in solution and solid states was characterized with the assistance of potentiometric titration and X-ray diffraction techniques, respectively. Solution-based thermodynamic studies illustrate that the dominant species of complex between Gd(III) and Me-3,2-HOPO (HL) is GdL2+ (log ß120 = 11.8 (3)) at pH 7.4. The structure of the Gd-Me-3,2-HOPO crystal obtained from a room temperature reaction reveals the formation of a Gd(III) dimer that is chelated by four ligands as a result of metal ion hydration and ligand complexation. Cellular Gd(III) removal assays illustrate that Me-3,2-HOPO could effectively reduce final amounts of gadolinium by 77.6% and 66.1% from rat renal proximal tubular epithelial (NRK-52E) cells and alpha mouse liver 12 (AML-12) cells, respectively. Our current results suggest the potential of bidentate HOPO ligands as an effective approach to treat patients suffering from Gd(III) toxicity.


Assuntos
Gadolínio , Piridonas , Animais , Quelantes/química , Meios de Contraste/química , Gadolínio/química , Ligantes , Camundongos , Piridonas/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA