Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Total Environ ; 906: 167619, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806594

RESUMO

Microplastics (MPs) and antibiotic resistance genes (ARGs) are both enriched in soil-vegetable systems as a consequence of the prolonged use of agricultural mulches. MPs can form unique bacterial communities and provide potential hosts for ARGs. Therefore, MPs stress may promote the spread of ARGs from soil to crops. Increasing ARGs pollution in soil-vegetable system. In our research, we investigated the distribution and major driving elements of antibiotic resistance genes in the soil-vegetable system under microplastic stress. The results showed that MPs treatment decreased the relative abundance of ARGs in non-rhizosphere soil. High concentrations of MPs promoted the enrichment of tetracycline antibiotic resistance genes in rhizosphere soil. MPs treatment promoted the enrichment of ARGs and mobile genetic elements (MGEs) in lettuce tissues, and the overall abundance of ARGs in root after 0.5 %, 1 %, and 2 % (w/w, dry weight) polyethylene (PE) administration was considerably higher compared to that in the untreated group (p < 0.05). At the same time, high PE concentrations promoted the spread of sulfa ARGs from root to leaf. MPs also impacted the bacterial communities in the soil-plant system, and the changes in ARGs as well as MGEs in each part of the soil-vegetable system were significantly correlated with the bacterial diversity index (p < 0.05). Correlation analysis and network analysis showed that bacterial communities and MGEs were the main drivers of ARGs variation in soil-lettuce systems.


Assuntos
Microplásticos , Verduras , Genes Bacterianos , Solo , Plásticos , Antibacterianos/farmacologia , Microbiologia do Solo , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Lactuca , Polietilenos
4.
Theranostics ; 12(18): 7681-7698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451864

RESUMO

Rationale: Increased lipid droplet (LD) formation has been linked to tumor metastasis, stemness, and chemoresistance in various types of cancer. Here, we revealed that LD formation is critical for the adaptation to sorafenib in hepatocellular carcinoma (HCC) cells. We aim to investigate the LD function and its regulatory mechanisms in HCC. Methods: The key proteins responsible for LD formation were screened by both metabolomics and proteomics in sorafenib-resistant HCC cells and further validated by immunoblotting and immunofluorescence staining. Biological function of AKR1C3 was evaluated by CRISPR/Cas9-based gene editing. Isotopic tracing analysis with deuterium3-labeled palmitate or carbon13-labeled glucose was conducted to investigate fatty acid (FA) and glucose carbon flux. Seahorse analysis was performed to assess the glycolytic flux and mitochondrial function. Selective AKR1C3 inhibitors were used to evaluate the effect of AKR1C3 inhibition on HCC tumor growth and induction of autophagy. Results: We found that long-term sorafenib treatment impairs fatty acid oxidation (FAO), leading to LD accumulation in HCC cells. Using multi-omics analysis in cultured HCC cells, we identified that aldo-keto reductase AKR1C3 is responsible for LD accumulation in HCC. Genetic loss of AKR1C3 fully depletes LD contents, navigating FA flux to phospholipids, sphingolipids, and mitochondria. Furthermore, we found that AKR1C3-dependent LD accumulation is required for mitigating sorafenib-induced mitochondrial lipotoxicity and dysfunction. Pharmacologic inhibition of AKR1C3 activity instantly induces autophagy-dependent LD catabolism, resulting in mitochondrial fission and apoptosis in sorafenib-resistant HCC clones. Notably, manipulation of AKR1C3 expression is sufficient to drive the metabolic switch between FAO and glycolysis. Conclusions: Our findings revealed that AKR1C3-dependent LD formation is critical for the adaptation to sorafenib in HCC through regulating lipid and energy homeostasis. AKR1C3-dependent LD accumulation protects HCC cells from sorafenib-induced mitochondrial lipotoxicity by regulating lipophagy. Targeting AKR1C3 might be a promising therapeutic strategy for HCC tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Sorafenibe/farmacologia , Gotículas Lipídicas , Neoplasias Hepáticas/tratamento farmacológico , Ácidos Graxos , Glucose , Membro C3 da Família 1 de alfa-Ceto Redutase
5.
Life Sci ; 311(Pt A): 121141, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36341914

RESUMO

BACKGROUND AND AIMS: Although oral berberine, a natural compound extracted from the Chinese herbal medicine curcumin, has low bioavailability, it is still effective in suppressing obesity; however, the underlying mechanism is unclear. Berberine can bind to bitter-taste receptors (TAS2Rs) in intestinal endocrine secretin tumor (STC-1) cells to promote glucagon-like peptide-1 (GLP-1) secretion. Notably, TAS2Rs also exist in the tuft cells of the gut. Therefore, this study aimed to explore whether the beneficial effect of oral berberine on obesity is dependent on bitter-taste signaling in the tuft cells of the gut. METHODS AND RESULTS: Standard chow diet (SCD) or high-fat diet (HFD) was administered to C57BL/6 mice, with or without berberine (100 mg/kg, 200 mg/kg, p. o.). The PLCß2 inhibitor U73122 was used to verify whether the anti-obesity effect of berberine was dependent on the bitter-taste signaling pathway. In this study, we observed that the oral administration of berberine alleviated HFD-induced obesity in mice that U73122 partially inhibited. Both in vivo and ex vivo, berberine upregulated the release of GLP-1, promoted the proliferation of tuft cells and secretion of IL-25 in obesity via the TAS2R signaling pathway. CONCLUSIONS: Oral berberine ameliorated HFD-induced obesity through the TAS2R-IL-25 signaling pathway in tuft cells in the gut. SIGNIFICANCE: We identified and functionally characterized the TAS2Rs and Gα-gustducin/Gß1γ13 signaling pathway utilized by tuft cells in response to oral berberine in obese mice and proposed a new mechanism underlying the anti-obesity effect of berberine.


Assuntos
Berberina , Células Endócrinas , Animais , Camundongos , Berberina/farmacologia , Dieta Hiperlipídica , Células Endócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
World J Gastrointest Oncol ; 13(9): 1164-1183, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34616521

RESUMO

BACKGROUND: Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments. Scoparone, a traditional Chinese medicine monomer with a wide range of pharmacological properties, has attracted considerable attention for its antitumor activity. AIM: To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action. METHODS: The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses. The effect of scoparone on pancreatic cancer cell proliferation, migration, invasion, cell cycle, and apoptosis was detected in vitro. The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and the molecular mechanism was analyzed using Western blot. The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry. RESULTS: The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms, including SwissTargetPrediction, STITCH, GeneCards, CTD, STRING, WebGestalt, Cytoscape, and Gepia; AKT1 was confirmed using qRT-PCR to be the hub gene. Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2 µmol/L and 209.1 µmol/L, respectively. Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells. Additionally, flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis. Scoparone also increased the expression levels of Bax and cleaved caspase-3, decreased the levels of MMP9 and Bcl-2, and suppressed the phosphorylation of Akt without affecting total PI3K and Akt. Moreover, compared with the control group, xenograft tumors, in the 200 µmol/L scoparone treatment group, were smaller in volume and lighter in weight, and the percentages of Ki65- and PCNA-positive cells were decreased. CONCLUSION: Our findings indicate that scoparone inhibits pancreatic cancer cell proliferation in vitro and in vivo, inhibits migration and invasion, and induces cycle arrest and apoptosis in vitro through the PI3K/Akt signaling pathway.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33062029

RESUMO

Cardiovascular disease is one of the main human health risks, and the incidence is increasing. Salidroside is an important bioactive component of Rhodiola rosea L., which is used to treat Alzheimer's disease, tumor, depression, and other diseases. Recent studies have shown that salidroside has therapeutic effects, to some degree, in cardiovascular diseases via an antioxidative mechanism. However, evidence-based clinical data supporting the effectiveness of salidroside in the treatment of cardiovascular diseases are limited. In this review, we discuss the effects of salidroside on cardiovascular risk factors and cardiovascular diseases and highlight potential antioxidant therapeutic strategies.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33101442

RESUMO

Cardiovascular disease (CVD) is the number one threat that seriously endangers human health. However, the mechanism of their occurrence is not completely clear. Increasing studies showed that mitochondrial dysfunction is closely related to CVD. Possible causes of mitochondrial dysfunction include oxidative stress, Ca2+ disorder, mitochondrial DNA mutations, and reduction of mitochondrial biosynthesis, all of which are closely related to the development of CVD. At present, traditional Chinese medicine (TCM) is widely used in the treatment of CVD. TCM has the therapeutic characteristics of multitargets and multipathways. Studies have shown that TCM can treat CVD by protecting mitochondrial function. Via systematic literature review, the results show that the specific mechanisms include antioxidant stress, regulation of calcium homeostasis, antiapoptosis, and regulation of mitochondrial biosynthesis. This article describes the relationship between mitochondrial dysfunction and CVD, summarizes the TCM commonly used for the treatment of CVD in recent years, and focuses on the regulatory effect of TCM on mitochondrial function.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32419790

RESUMO

BACKGROUND: With the development of biological technology, biomarkers for the prevention and diagnosis of acute coronary syndrome (ACS) have become increasingly evident. However, the study of novel circular RNAs (circRNAs) in ACS is still in progress. This study aimed to investigate whether the regulation of circRNA-miRNA networks is involved in ACS pathogenesis. METHODS: We used microarray analysis to detect significantly expressed circRNAs and miRNAs in the peripheral blood of patients in the control group (CG) and ACS groups, including an unstable angina pectoris (UAP) group and an acute myocardial infarction (AMI) group. A circRNA-miRNA interaction network analysis was carried out with open-source bioinformatics. The gene ontology (GO), pathway, and disease enrichment analyses for differentially expressed circRNAs were further analysed with hierarchical clustering. RESULTS: A total of 266 circRNAs (121 upregulated and 145 downregulated, P < 0.05, fold change FC ≥2) and 3 miRNAs (1 upregulated and 2 downregulated, P < 0.05, FC ≥ 1.2) were differentially expressed in the ACS groups compared with those in the CG. In addition, among these expressed circRNAs and miRNAs, a single circRNA could bind to more than 1-100 miRNAs, and vice versa. Next, an AMI-UAP network, an AMI-CG network, a UAP-CG network, and an AMI-CG-UAP network were constructed. The top 30 enriched GO terms among the three groups were emphasized as differentially expressed. Disease enrichment analysis showed that these differentially expressed circRNAs are involved in the pathogenesis of cardiovascular diseases. KEGG pathway analysis was performed to identify pathways associated with circRNAs targeting mRNAs. CONCLUSION: CircRNAs are closely related to the pathological process of ACS via a mechanism that may be related to the up- or down-regulation of circRNAs and miRNAs and circRNA-miRNA coexpression. The metabolic pathways, signalling pathways, and diseases affected by these circRNAs can be predicted by enrichment analysis.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32148552

RESUMO

There has been an increase in morbidity and mortality related to coronary heart disease (CHD) in China in recent years. Numerous clinical experiences and studies have shown that traditional Chinese medicine (TCM) plays an important role in the prevention, treatment, and prognosis of CHD. However, the mechanism of TCM in the treatment of CHD has not yet been elucidated. The circRNA-miRNA-mRNA network consists of miRNA that is competitively bound by circRNA, and miRNA regulates the transcription level of mRNA. Through literature review, we found that the circRNA-miRNA-mRNA network acts to contribute to certain effects to CHD such as myocardial hypertrophy, myocardial fibrosis, and heart failure. TCM contains constituents that act against CHD by antiatherosclerosis and apoptosis inhibition action, cardiac and cardiomyocyte protection, and these components also promote cell growth and protection of the vascular system by regulating miRNAs. Therefore, we consider that the circRNA-miRNA-mRNA network may be a new regulatory mechanism for the effective treatment of CHD by TCM.

11.
BMC Gastroenterol ; 20(1): 21, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996143

RESUMO

BACKGROUND: Enteral nutrition should be implemented as early as possible in patients with moderate or severe acute pancreatitis. This study was designed to evaluate the feasibility and Deffectiveness of ultrasound-guided Freka-Trelumina tube placement for enteral nutrition in acute pancreatitis. METHODS: Patients with severe acute pancreatitis admitted to Shengjing Hospital of China Medical University who needed Freka-Trelumina tube placement for enteral nutrition and gastrointestinal decompression were included in the current study. The relevant evaluation indicators of tube placement included the success rate of tube placement, tube placement time, tube shift rate, and blocking rate. In addition, the evaluation indicators of ultrasound-guided tube placement (from 1 January 2018 to 31 July 2019) were compared with those of previous endoscope-guided placement (from 1 January 2015 to 31 December 2017) by analysing the data from the electronic medical record system. RESULTS: The success rate of ultrasound-guided tube placement was 90.7% (49/54). All 49 patients tolerated the Freka-Trelumina feeding tube. The average ultrasound-guided tube placement time for the 49 patients was 18.4 ± 12.8 min (range, 5-36 min). The Freka-Trelumina feeding tube had a shift rate of 10.2% (5/49). The blocking rate of the Freka-Trelumina feeding tube was 12.2% (6/49). The success rate of tube placement, tube shift rate and blocking rate for endoscope-guided tube placement were 100% (62/62), 11.3% (7/62), and 12.9% (8/62), respectively. The average endoscope-guided tube placement time for the 62 patients was 16.5 ± 5.7 min (range, 12-31 min). The comparison between the ultrasound-guided group and the endoscope-guided group showed that the success rate of tube placement, tube placement time, tube shift rate and blocking rate were similar. CONCLUSION: The ultrasound-guided method can be done non-invasively at the bedside, which is safe and convenient, and the Freka-Trelumina feeding tube can be placed in time to achieve the goal of early enteral nutrition and gastrointestinal decompression.


Assuntos
Nutrição Enteral/métodos , Intubação Gastrointestinal/métodos , Pancreatite/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Endoscópios , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA