Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 460: 132528, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713776

RESUMO

Wastewater treatment plants (WWTPs) are considered as hotspots for the spread of antibiotic resistome into the environment. However, the differential contributions of WWTPs to the antibiotic resistome in the receiving river water and sediment are poorly understood. Here, based on metagenomic analysis, we found that the WWTP effluents significantly elevated the diversities and abundances of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in the receiving river water from the Qinghai-Tibet Plateau, but showed less interference with the antibiotic resistome in sediment. Estimated by SourceTracker, WWTPs contributed 60.691.8% of ARGs in downstream river water, much higher than those for sediment (7.7568.0%). A holistic comparison of ARG risks based on analysis of ARG combination, mobility risk, ARG hosts and ARG-carrying pathogens further revealed the great impacts of WWTP effluents on downstream river water rather than sediment. Among various MGEs, tnpA exhibited the greatest potential for the dissemination of ARGs, and displayed highest co-occurrence frequency with multiple ARGs. P. aeruginosa, E. cloacae, and E. coli were identified as the critical-priority pathogens of ARG hosts. This study demonstrated the much greater impacts of WWTP effluents on the downstream water compared with sediment, which is significant for developing effective strategies to mitigate ARG risks.


Assuntos
Escherichia coli , Água , Rios , Medição de Risco , Antibacterianos/farmacologia , Pseudomonas aeruginosa
2.
Environ Technol ; 37(22): 2905-15, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27012589

RESUMO

The present study investigated the effects of lead on the morphological structure, physical and chemical properties, wastewater treatment performance and microbial community structure of aerobic granular sludge (AGS) in sequencing batch reactors (SBRs). The results showed that at Pb(2+) concentration of 1 mg/L, the mixed liquid suspended solids decreased, the settling velocity increased and the sludge volume index increased sharply. Meanwhile, AGS began to disintegrate and show an irregular shape. In terms of wastewater treatment in an SBR, the phosphorus removal rate was affected only until the Pb(2+) concentration was up to 1 mg/L. The [Formula: see text] removal efficiency began to decline when the Pb(2+) concentration increased to 6 mg/L, while the removal of chemical oxygen demand increased slightly within the Pb(2+) concentration range of 1-6 mg/L. Significant changes were observed in the microbial community structure, especially the dominant bacteria. Compared to the Pb(2+) accumulation on the sludge, the Pb(2+) concentration in the aqueous phase played a more important role in the performance and microbial community of AGS in SBRs.


Assuntos
Reatores Biológicos , Chumbo/análise , Esgotos/microbiologia , Poluentes Químicos da Água/análise , Compostos de Amônio/análise , Bactérias/efeitos dos fármacos , Análise da Demanda Biológica de Oxigênio , DNA Bacteriano/genética , Fósforo/análise , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA