Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1320473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148859

RESUMO

Dioscorea nipponica Makino, a perennial twining herb with medicinal importance, has a disjunctive distribution in the Sino-Japanese Floristic Region. It has a long history in traditional Chinese medicine, with demonstrated efficacy against various health conditions. However, the limited genomic data and knowledge of genetic variation have hindered its comprehensive exploration, utilization and conservation. In this study, we undertook low-coverage whole genome sequencing of diverse D. nipponica accessions to develop both plastome (including whole plastome sequences, plastome-derived SSRs and plastome-divergent hotspots) and nuclear genomic resources (including polymorphic nuclear SSRs and single-copy nuclear genes), as well as elucidate the intraspecific phylogeny of this species. Our research revealed 639 plastome-derived SSRs and highlighted six key mutational hotspots (namely CDS ycf1, IGS trnL-rpl32, IGS trnE-trnT, IGS rps16-trnQ, Intron 1 of clpP, and Intron trnG) within these accessions. Besides, three IGS regions (i.e., ndhD-cssA, trnL-rpl32, trnD-trnY), and the intron rps16 were identified as potential markers for distinguishing D. nipponica from its closely related species. In parallel, we successfully developed 988 high-quality candidate polymorphic nuclear SSRs and identified 17 single-copy nuclear genes for D. nipponica, all of which empower us to conduct in-depth investigations into phylogenetics and population genetics of this species. Although our phylogenetic analyses, based on plastome sequences and single-copy nuclear genes revealed cytonuclear discordance within D. nipponica, both findings challenged the current subspecies classification. In summary, this study developed a wealth of genomic resources for D. nipponica and enhanced our understanding of the intraspecific phylogeny of this species, offering valuable insights that can be instrumental in the conservation and strategic utilization of this economically significant plant.

2.
Arch Pharm Res ; 35(4): 701-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22553063

RESUMO

The rDNA ITS region of 18 samples of Changium smyrnioides from 7 areas and of 2 samples of Chuanminshen violaceum were sequenced and analyzed. The amplified ITS region of the samples, including a partial sequence of ITS1 and complete sequences of 5.8S and ITS2, had a total length of 555 bp. After complete alignment, there were 49 variable sites, of which 45 were informative, when gaps were treated as missing data. Samples of C. smyrnioides from different locations could be identified exactly based on the variable sites. The maximum parsimony (MP) and neighbor joining (NJ) tree constructed from the ITS sequences based on Kumar's two-parameter model showed that the genetic distances of the C. smyrnioides samples from different locations were not always related to their geographical distances. A specific primer set for Allele-specific PCR authentication of C. violaceum from Jurong of Jiangsu was designed based on the SNP in the ITS sequence alignment. C. violaceum from the major genuine producing area in Jurong of Jiangsu could be identified exactly and quickly by Allele-specific PCR.


Assuntos
Apiaceae/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Plantas Medicinais/genética , Alelos , Apiaceae/crescimento & desenvolvimento , China , Eletroforese em Gel de Ágar , Variação Genética , Filogenia , Plantas Medicinais/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA