Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 324: 121392, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906056

RESUMO

The earth's natural environmental factors and man-made industrial pollution often lead to the co-occurrence of environmental pathogenic factors and malnutrition. Bisphenol A (BPA) is a serious environmental endocrine disruptor, and its exposure can cause liver tissue damage. Selenium (Se) deficiency is a worldwide problem that afflicts thousands of people, and Se deficiency can cause M1/M2 imbalance. In addition, the crosstalk between hepatocyte and immune cell is closely related to the occurrence of hepatitis. Therefore, this study found for the first time that the combined exposure of BPA and Se deficiency caused liver pyroptosis and M1 polarization through ROS, and the crosstalk between pyroptosis and M1 polarization aggravated liver inflammation in chicken. In this study, the BPA or/and Se deficiency chicken liver, single and co-culture model of LMH and HD11 cells were established. The results displayed that BPA or Se deficiency induced liver inflammation accompanied by pyroptosis and M1 polarization through oxidative stress, and increased expressions of chemokines (CCL4, CCL17, CCL19, and MIF) and inflammatory factors (IL-1ß and TNF-α). The vitro experiments further verified the above changes and showed that LMH pyroptosis promoted M1 polarization of HD11 cells, and vice versa. NAC counteracted pyroptosis and M1 polarization caused by BPA and low-Se, reducing the release of inflammatory factors. In brief, BPA and Se deficiency treatment can exacerbate liver inflammation by increasing oxidative stress to induce pyroptosis and M1 polarization.


Assuntos
Piroptose , Selênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Galinhas , Selênio/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fígado/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36375805

RESUMO

Selenoprotein K (SELENOK) is a major part of selenoprotein family. Selenoproteins have been proven playing vital roles in a variety of physiological processes. However, as a necessary supplement to the body of trace elements, how SELENOK regulates necroptosis in chicken liver has none clear claim. The purpose of this study was to cover the mechanism of SELENOK act in necroptosis of chicken liver. By feeding Se-deficiency diet for 1-day-old hyline chickens, we successfully built SELENOK-deficiency and discussed the regulation SELENOK have done. The test of liver function showed there has dysfunction appeared in the -Se groups. Results of TEM showed necroptosis occurred in the 35-Se group. After that western blot and qRT-PCR results prompted us SELENOK-deficiency caused large accumulation of ROS, enhanced endoplasmic reticulum stress, abnormally elevated HSPs family expression, and activated RIPK1-RIPK3 complex. In order to show the regulation of SELENOK in chicken liver, we artificially knocked off SELENOK gene in LMH cells. Through AO/EB staining we also found necroptosis in the siRNA-Se group. Furthermore, the results in LMH cells were coincided with those in chicken (Gallus gallus) liver. Our experiment clarified the molecular mechanism of SELENOK in the regulation and liver necroptosis, and provided reference for the healthy feeding mode of broilers.


Assuntos
Galinhas , Selênio , Animais , Galinhas/metabolismo , Estresse do Retículo Endoplasmático , Selenoproteínas/genética , Selenoproteínas/metabolismo , Fígado/metabolismo , Estresse Oxidativo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36257570

RESUMO

Selenium deficiency can lead to multiple tissue and organ damage in the body and could coexist with chronic toxic exposures. Contamination from Bisphenol A (BPA) exposure can induce the occurrence of various injuries including pyroptosis. However, it is not clear whether selenium deficiency and BPA exposure affect tracheal tissue pyroptosis in chickens. To investigate whether selenium deficiency and BPA exposure induce chicken tracheal tissue pyroptosis via the NF-κB/NLRP3/Caspase-1 pathway and the effect of their combined exposure on tissue injury, we developed a model of relevant chicken tracheal injury. Sixty broilers were divided into four groups: the control group (C group), selenium-deficient group (SeD group), BPA-exposed group (BPA group) and combined exposure group (SeD + BPA group). The study examined the expression indicators of markers of pyroptosis (NLRP3&GSDMD), NF-κB pathway-related inflammatory factors (NF-κB, iNOS, TNF-α, COX-2), pyroptosis-related factors (ASC, Caspase-1, IL-1ß, IL-18), and some heat shock proteins and interleukins (HSP60, HSP90, IL-6, IL-17) in the samples. The results showed that the expression of the above indicators was significantly upregulated in the different treatment groups (P < 0.05). In addition, the expression levels of the above related indicators were more significantly up-regulated in the combined selenium-deficient and BPA-exposed group compared to the group in which they were individually exposed. It was concluded that selenium deficiency and BPA exposure induced tracheal tissue pyroptosis in chickens through NF-κB/NLRP3/Caspase-1 pathway, and BPA exposure exacerbated selenium deficiency-induced tracheal pyroptosis. The present study provides new ideas into studies related to the co-exposure of organismal micronutrient deficiency and chronic toxicants.


Assuntos
Piroptose , Selênio , Animais , NF-kappa B/metabolismo , Caspase 1/metabolismo , Caspase 1/farmacologia , Galinhas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Selênio/farmacologia , Traqueia
4.
Front Psychiatry ; 9: 483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386260

RESUMO

Post-stroke depression (PSD) is one of the most frequent complications of stroke. The Yi-nao-jie-yu prescription (YNJYP) is an herbal prescription widely used as a therapeutic agent against PSD in traditional Chinese medicine. Disruption of adult neurogenesis has attracted attention as a potential cause of cognitive pathophysiology in neurological and psychiatric disorders. The Notch signaling pathway plays an important role in neurogenesis. This study investigated the effects of YNJYP on adult neurogenesis and explored its underlying molecular mechanism in a rat model of PSD that is established by middle cerebral artery occlusion and accompanied by chronic immobilization stress for 1 week. At 2, 4, and 8 weeks, depression-like behavior was evaluated by a forced swim test (FST) and sucrose consumption test (SCT). Neurogenesis was observed by double immunofluorescence staining. Notch signals were detected by real-time polymerase chain reaction. The results show that, at 4 weeks, the immobility time in the FST for rats in the PSD group increased and the sucrose preference in the SCT decreased compared with that in the stroke group. Therefore, YNJYP decreased the immobility time and increased the sucrose preference of the PSD rats. Further, PSD interfered with neurogenesis and decreased the differentiation toward neurons of newly born cells in the hippocampal dentate gyrus, and increased the differentiation toward astrocytes, effects that were reversed by YNJYP, particularly at 4 weeks. At 2 weeks, compared with the stroke group, expression of target gene Hes5 mRNA transcripts in the PSD group decreased, but increased after treatment with YNJYP. At 4 weeks, compared with the stroke group, the expression of Notch receptor Notch1 mRNA transcripts in the PSD group decreased, but also increased after treatment with YNJYP. Overall, this study indicated that disturbed nerve regeneration, including the increased numbers of astrocytes and decrease numbers of neurons, is a mechanism of PSD, and Notch signaling genes dynamically regulate neurogenesis. Moreover, YNJYP can relieve depressive behavior in PSD rats, and exerts a positive effect on neurogenesis by dynamically regulating the expression of Notch signaling genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA