Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Tradit Chin Med ; 40(4): 646-653, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32744032

RESUMO

OBJECTIVE: To assess the protective role of benazepril, an angiotensin-converting enzyme inhibitor, in renal damage caused by prenatal inflammation. METHODS: Saline or lipopolysaccharide were administered intraperitoneally to pregnant Sprague- Dawley rats on gestation days 8, 10, and 12. After birth, offspring received either tap water or benazepril in water between 7 and 68 weeks. Blood pressure, blood urea nitrogen, creatinine, and 24-h urine volume were measured as indices of renal function. Hematoxylin, eosin, periodic acid-Schiff, and Sirius Red staining were used to evaluate renal damage. RESULTS: Postnatal benazepril treatment ameliorated hypertension and restored normal 24-h urine volume and blood urea nitrogen and serum creatinine levels. Benazepril treatment also reduced glycoprotein accumulation and fibrosis in the glomerulus and in tubular epithelial cells and inhibited nuclear factor-kappa B activation. CONCLUSION: Together with our previous findings that postnatal inhibition of nuclear factor-kappa B activation blocks intra-renal renin-angiotensin system activation, our current data demonstrate that intra-renal activation of the renin-angiotensin system interacts with nuclear factor-kappa B activation to cause renal damage in adulthood following prenatal inflammation.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Benzazepinas/administração & dosagem , Rim/efeitos dos fármacos , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Feminino , Humanos , Rim/imunologia , Rim/lesões , Lipopolissacarídeos/efeitos adversos , Masculino , NF-kappa B/genética , NF-kappa B/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , Ratos
2.
Toxicol Appl Pharmacol ; 383: 114747, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499192

RESUMO

Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of vascular restenosis. We investigated whether polypyrimidine tract-binding protein 1 (PTBP1), a novel regulator of cell proliferation and differentiation, is implicated in VSMC proliferation and neointima hyperplasia responding to injury. C57BL/6 J mice of 10-12 weeks old were randomly divided into sham and carotid artery injury group. Primary VSMCs obtained from thoracic aortas of 10- to 12-week-old mice were treated with physiological saline and platelet derived growth factor-BB (PDGF-BB). Adenovirus expressing shCon, shPTBP1 or shYY2 were transfected into the injured common carotid artery or VSMCs. qRT-PCR and immunoblotting were used to determine the mRNA and protein expression levels, respectively. Immunohistochemical staining of H&E and Ki-67 were used to evaluate restenosis of vessels. Cell counting kit-8 assay and Ki-67 immunofluorescent staining were utilized to evaluate the rate of VSMC proliferation. The expression of PTBP1 were upregulated both in injured arteries and in PDGF-BB-treated VSMCs. PTBP1 inhibition significantly attenuated neointima hyperplasia and Ki-67 positive area induced by injury. Knockdown of PTBP1 in vitro also suppressed VSMC proliferation after PDGF-BB treatment. The effects of PTBP1 inhibition mentioned above were all abolished by knockdown of YY2. Finally, we identified four cell cycle regulators (p53, p21, Cdkn1c, Cdkn2b) that were regulated by PTBP1/YY2 axis both in vitro and in vivo. These findings demonstrated that PTBP1 is a critical regulator of VSMC proliferation and neointima hyperplasia via modulating the expression of YY2.


Assuntos
Proliferação de Células/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Hiperplasia/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Fatores de Transcrição/biossíntese , Animais , Becaplermina/farmacologia , Proliferação de Células/efeitos dos fármacos , Ribonucleoproteínas Nucleares Heterogêneas/antagonistas & inibidores , Hiperplasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Neointima/patologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
3.
J Hypertens ; 37(11): 2256-2268, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31136458

RESUMO

OBJECTIVES: Vascular smooth muscle cell (VSMC) proliferation is a crucial cause of vascular neointima hyperplasia and restenosis, thus limiting the long-term efficacy of percutaneous vascular intervention. We explored the role of wild-type p53-induced phosphatase 1 (Wip1), a potent regulator of tumorigenesis and atherosclerosis, in VSMC proliferation and neointima hyperplasia. METHODS AND RESULTS: Animal model of vascular restenosis was established in wild type C57BL/6J and VSMC-specific Tuberous Sclerosis 1 (TSC1)-knockdown mice by wire injury. We observed increased protein levels of Wip1, phospho (p)-S6 Ribosomal Protein (S6), p-4EBP1 but decreased p-adenosine 5'-monophosphate-activated protein kinase (AMPK)α both in carotid artery at day 28 after injury and in VSMCs after 48 h of platelet derived growth factor-BB (PDGF-BB) treatment. By using hematoxylin-eosin staining, Ki-67 immunohistochemical staining, cell counting kit-8 assay and Ki-67 immunofluorescence staining, we found Wip1 antagonist GSK2830371 (GSK) or mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin both obviously reversed the neointima formation and VSMC proliferation induced by wire injury and PDGF-BB, respectively. GSK also reversed the increase in mRNA level of Collagen I after wire injury. However, GSK had no obvious effects on VSMC migration induced by PDGF-BB. Simultaneously, TSC1 knockdown as well as AMPK inhibition by Compound C abolished the vascular protective and anti-proliferative effects of Wip1 inhibition. Additionally, suppression of AMPK also reversed the declined mTORC1 activity by GSK. CONCLUSION: Wip1 promotes VSMC proliferation and neointima hyperplasia after wire injury via affecting AMPK/mTORC1 pathway.


Assuntos
Aminopiridinas/uso terapêutico , Dipeptídeos/uso terapêutico , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima/prevenção & controle , Proteína Fosfatase 2C/metabolismo , Lesões do Sistema Vascular/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aminopiridinas/farmacologia , Animais , Becaplermina , Artéria Carótida Primitiva/patologia , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Hiperplasia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular , Neointima/etiologia , Proteína Fosfatase 2C/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Lesões do Sistema Vascular/complicações
4.
PLoS One ; 13(4): e0192888, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617363

RESUMO

Resistance to 5-fluorouracil (5-FU) and its induced immune suppression have prevented its extensive application in the clinical treatment of breast cancer. In this study, the combined effect of 50 Hz-EMFs and 5-FU in the treatment of breast cancer was explored. MCF-7 and MCF10A cells were pre-exposed to 50 Hz-EMFs for 0, 2, 4, 8 and 12 h and then treated with different concentrations of 5-FU for 24 h; cell viability was analyzed by MTT assay and flow cytometry. After pre-exposure to 50 Hz-EMFs for 12 h, apoptosis and cell cycle distribution in MCF-7 and MCF10A cells were detected via flow cytometry and DNA synthesis was measured by EdU incorporation assay. Apoptosis-related and cell cycle-related gene and protein expression levels were monitored by qPCR and western blotting. Pre-exposure to 50 Hz-EMFs for 12 h enhanced the antiproliferative effect of 5-FU in breast cancer cell line MCF-7 in a dose-dependent manner but not in normal human breast epithelial cell line MCF10A. Exposure to 50 Hz-EMFs had no effect on apoptosis and P53 expression of MCF-7 and MCF10A cells, whereas it promoted DNA synthesis, induced entry of MCF-7 cells into the S phase of cell cycle, and upregulated the expression levels of cell cycle-related proteins Cyclin D1 and Cyclin E. Considering the pharmacological mechanisms of 5-FU in specifically disrupting DNA synthesis, this enhanced inhibitory effect might have resulted from the specific sensitivity of MCF7 cells in active S phase to 5-FU. Our findings demonstrate the enhanced cytotoxic activity of 5-FU on MCF7 cells through promoting entry into the S phase of the cell cycle via exposure to 50 Hz-EMFs, which provides a novel method of cancer treatment based on the combinatorial use of 50 Hz-EMFs and chemotherapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias da Mama/terapia , Fluoruracila/farmacologia , Magnetoterapia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada/métodos , Campos Eletromagnéticos , Feminino , Humanos , Células MCF-7 , Magnetoterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA