Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mycorrhiza ; 34(1-2): 131-143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38129688

RESUMO

The phoD-harboring bacterial community is responsible for organic phosphorus (P) mineralization in soil and is important for understanding the interactions between arbuscular mycorrhizal (AM) fungi and phosphate-solubilizing bacteria (PSB) at the community level for organic P turnover. However, current understanding of the phoD-harboring bacterial community associated with AM fungal hyphae responses to organic P levels remains incomplete. Here, two-compartment microcosms were used to explore the response of the phoD-harboring bacterial community in the hyphosphere to organic P levels by high-throughput sequencing. Extraradical hyphae of Funneliformis mosseae enriched the phoD-harboring bacterial community and organic P levels significantly altered the composition of the phoD-harboring bacterial community in the Funneliformis mosseae hyphosphere. The relative abundance of dominant families Pseudomonadaceae and Burkholderiaceae was significantly different among organic P treatments and were positively correlated with alkaline phosphatase activity and available P concentration in the hyphosphere. Furthermore, phytin addition significantly decreased the abundance of the phoD gene, and the latter was significantly and negatively correlated with available P concentration. These findings not only improve the understanding of how organic P influences the phoD-harboring bacterial community but also provide a new insight into AM fungus-PSB interactions at the community level to drive organic P turnover in soil.


Assuntos
Fungos , Micorrizas , Fósforo , Humanos , Microbiologia do Solo , Bactérias/genética , Fosfatos , Solo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35463062

RESUMO

Remyelination is a refractory feature of demyelinating diseases such as multiple sclerosis (MS). Studies have shown that promoting oligodendrocyte precursor cell (OPC) differentiation, which cannot be achieved by currently available therapeutic agents, is the key to enhancing remyelination. Bu Shen Yi Sui capsule (BSYSC) is a traditional Chinese herbal medicine over many years of clinical practice. We have found that BSYSC can effectively treat MS. In this study, the effects of BSYSC in promoting OPCs differentiation and remyelination were assessed using an experimental autoimmune encephalomyelitis (EAE) model in vivo and cultured OPCs in vitro. The results showed that BSYSC reduced clinical function scores and increased neuroprotection. The expression of platelet-derived growth factor receptor α (PDGFR-α) was decreased and the level of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) was increased in the brains and spinal cords of mice as well as in OPCs after treatment with BSYSC. We further found that BSYSC elevated the expression of miR-219 or miR-338 in the serum exosomes of mice with EAE, thereby suppressing the expression of Sox6, Lingo1, and Hes5, which negatively regulate OPCs differentiation. Therefore, serum exosomes of BSYSC-treated mice (exos-BSYSC) were extracted and administered to OPCs in which miR-219 or miR-338 expression was knocked down by adenovirus, and the results showed that Sox6, Lingo1, and Hes5 expression was downregulated, MBP expression was upregulated, OPCs differentiation was increased, and the ability of OPCs to wrap around neuronal axons was improved. In conclusion, BSYSC may exert clinically relevant effects by regulating microRNA (miR) levels in exosomes and thus promoting the differentiation and maturation of OPCs.

3.
Front Pharmacol ; 13: 812386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308250

RESUMO

Siwu-Yin (SWY), a traditional Chinese medicinal formula, can replenish blood and nourish Yin. It was recorded in ancient Chinese medicine books in treating esophageal dysphagia, which has similar symptoms and prognosis with esophageal precancerous lesions and esophageal cancer. However, its effect has not been established in vivo. This study explores the antiesophageal cancer effect of SWY on rats with esophageal precancerous lesions. By performing 16S rRNA gene sequencing and metabolomics, it was suggested that SWY may improve the composition of intestinal flora of rats by regulating the synthesis and secretion of bile acids. In addition, flow cytometry results showed that SWY treatment modified tumor microenvironment by improving macrophage polarization and therefore inhibiting the occurrence of esophageal precancerous lesions.

4.
Oxid Med Cell Longev ; 2021: 5521503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815654

RESUMO

BACKGROUND: Bu Shen Yi Sui capsule (BSYS) is a traditional Chinese medicine prescription that has shown antineuroinflammatory and neuroprotective effects in treating multiple sclerosis (MS) and its animal model of experimental autoimmune encephalomyelitis (EAE). Microglia play an important role in neuroinflammation. The M1 phenotype of microglia is involved in the proinflammatory process of the disease, while the M2 phenotype plays an anti-inflammatory role. Promoting the polarization of microglia to M2 in MS/EAE is a promising therapeutic strategy. This study is aimed at exploring the effects of BSYS on microglial polarization in mice with EAE. METHODS: The EAE model was established by the intraperitoneal injection of pertussis toxin and subcutaneous injection of myelin oligodendrocyte glycoprotein (MOG)35-55 in C57BL/6J mice. The mice were treated with BSYS (3.02 g/kg), FTY720 (0.3 mg/kg), or distilled water by intragastric administration. H&E and LFB staining, transmission electron microscopy, qRT-PCR, immunofluorescence, ELISA, fluorescence in situ hybridization, and western blotting were used to detect the histological changes in myelin, microglial M1/M2 polarization markers, and the expression of key genes involved in EAE. Results and Conclusions. BSYS treatment of EAE mice increased the body weight, decreased the clinical score, and reduced demyelination induced by inflammatory infiltration. BSYS also inhibited the mRNA expression of M1 microglial markers while increasing the mRNA level of M2 markers. Additionally, BSYS led to a marked decrease in the ratio of M1 microglia (iNOS+/Iba1+) and an obvious increase in the number of M2 microglia (Arg1+/Iba1+). In the EAE mouse model, miR-124 expression was decreased, and miR-155 expression was increased, while BSYS treatment significantly reversed this effect and modulated the levels of C/EBP α, PU.1, and SOCS1 (target genes of miR-124 and miR-155). Therefore, the neuroprotective effect of BSYS against MS/EAE was related to promoting microglia toward M2 polarization, which may be correlated with changes in miR-124 and miR-155 in vivo.


Assuntos
Encéfalo/patologia , Doenças Desmielinizantes/genética , Medicamentos de Ervas Chinesas/farmacologia , Encefalomielite Autoimune Experimental/genética , Inflamação/patologia , MicroRNAs/metabolismo , Microglia/patologia , Animais , Peso Corporal/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cápsulas , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/patologia , Exossomos/metabolismo , Feminino , Inflamação/genética , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , MicroRNAs/genética , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Fenótipo , Proteínas Proto-Oncogênicas/metabolismo , Medula Espinal/patologia , Transativadores/metabolismo , Regulação para Cima/genética
5.
Carbohydr Polym ; 205: 540-549, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446138

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells (APC) that play a central role in the initiation and regulation of immune responses. We have previously demonstrated that Lycium barbarum polysaccharides liposomes (LBPL) as immune adjuvant elicits strong antigen-specific Th1 immune responses. The purpose of this study was to investigate underlying mechanism of liposomes promoting effect of Lycium barbarum polysaccharides (LBP) on activating DCs. LBP were loaded with high entrapment efficiency (86%) into liposomes using reverse phase evaporation. LBPL activation of phenotypic and functional maturation of DCs was explored through mechanistic studies of the TLR4-MyD88-NF-κB signaling pathway and amount of proinflammatory cytokines released. We found that LBPL indeed activated immature DCs and induced DCs maturation characterized by up-regulation of co-stimulatory molecules (MHCII, CD80, CD86), production of cytokines (IL-12p40, TNF-α), and enhancement of antigen uptake. Additionally, we demonstrated that liposomes could promote LBP up-regulation of TLR4, MyD88, TRAF6, NF-κB gene and protein expression.


Assuntos
Células Dendríticas/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Lipossomos/farmacologia , Lycium/química , Polissacarídeos/farmacologia , Animais , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/metabolismo , Medicamentos de Ervas Chinesas/química , Feminino , Subunidade p40 da Interleucina-12/metabolismo , Lipossomos/química , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Polissacarídeos/química , Transdução de Sinais/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
6.
Int J Nanomedicine ; 12: 6289-6301, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894367

RESUMO

The success of subunit vaccines has been hampered by the problems of weak or short-term immunity and the lack of availability of nontoxic, potent adjuvants. It would be desirable to develop safe and efficient adjuvants with the aim of improving the cellular immune response against the target antigen. In this study, the targeting and sustained release of simple nanoliposomes containing Lycium barbarum polysaccharides (LBP) as an efficacious immune adjuvant to improve immune responses were explored. LBP liposome (LBPL) with high entrapment efficiency (86%) were obtained using a reverse-phase evaporation method and then used to encapsulate the model antigen, ovalbumin (OVA). We demonstrated that the as-synthesized liposome loaded with OVA and LBP (LBPL-OVA) was stable for 45 days and determined the encapsulation stability of OVA at 4°C and 37°C and the release profile of OVA from LBPL-OVA was investigated in pH 7.4 and pH 5.0. Further in vivo investigation showed that the antigen-specific humoral response was correlated with antigen delivery to the draining lymph nodes. The LBPL-OVA were also associated with high levels of uptake by key dendritic cells in the draining lymph nodes and they efficiently stimulated CD4+ and CD8+ T cell proliferation in vivo, further promoting antibody production. These features together elicited a significant humoral and celluar immune response, which was superior to that produced by free antigen alone.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Medicamentos de Ervas Chinesas/administração & dosagem , Imunidade Celular/efeitos dos fármacos , Lipossomos/química , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Medicamentos de Ervas Chinesas/química , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/química , Ovalbumina/química , Ovalbumina/imunologia , Ovalbumina/farmacocinética , Fosfolipídeos/química , Glycine max/química , Vacinas/administração & dosagem , Vacinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA