Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 904: 165837, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517732

RESUMO

To date, studies on the effect of sewage disturbances on treatment facilities were based on fixed-length flow variations, which are incapable of imitating the actual dynamic flow characteristics of municipal sewage. Here, an innovative dynamic influent disturbance control system is established in this study and applied in a novel denitrifying phosphorus removal (anaerobic anoxic oxic-biological contact oxidation, AAO-BCO) system to simulate seasonal and diurnal sewage fluctuations in laboratory-scale experiments. The results showed that, under sinusoidal influent flow perturbation, the effluent pollutant content followed a relatively gentle sinusoidal trend and did not always result in desired level of pollutant removal. The ability of the system to cope with sinusoidal flow variations was susceptible to the amplitude of diurnal sewage fluctuation, while stronger tolerance capacity was observed to seasonal and momentary increase in wastewater flowrate. There was also a discrepancy in the system buffering capacity towards various pollutants removal (COD > TIN > PO43-), which may be attributed to wide fluctuations in PO43-/NO3- and different decrease in metabolic activity of denitrifying phosphorus removal (DPR) sludge caused by extreme hydraulic retention times. To improve the robustness and stability of the DPR system, a regulating strategy was proposed to alleviate the biomass reduction and uncoordinated PO43-/NO3-.


Assuntos
Poluentes Ambientais , Esgotos , Eliminação de Resíduos Líquidos/métodos , Fósforo , Reatores Biológicos , Nitrogênio/análise
2.
Bioresour Technol ; 369: 128444, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493952

RESUMO

Given the carbon limitation of municipal wastewater, the balance of biological nitrogen and phosphorus removal remains a challenging task. In this study, an anaerobic-anoxic-oxic combining with biological contact oxidation (A2/O-BCO) system treating real municipal wastewater was operated for 205 days, and COD-to-PO43--P ratio was confirmed as the key parameter for balancing denitrifying phosphorus-accumulating organisms (DPAOs) and denitrifying glycogen-accumulating organisms (DGAOs) to enhance N and P removal. When DPAOs dominated in nutrients removal, the increase in COD/P from 17.1 to 38.1 caused the deterioration in nitrogen removal performance decreasing to 71.8 %. As COD/P ratio decreased from 81.3 to 46.8, Ca.Competibacter proliferated from 3.11 % to 6.00 %, contributing to 58.9 % of nitrogen removal. The nitrogen and phosphorus removal efficiency reached up to 79.3 % and 95.2 %. Overall, establishing DGAOs-DPAOs balance by strengthening the effect of DGAOs could enhance the nutrients removal performance and accordingly improve the stability and efficiency of the system.


Assuntos
Fósforo , Águas Residuárias , Eliminação de Resíduos Líquidos , Esgotos , Desnitrificação , Nitrogênio , Glicogênio , Reatores Biológicos
3.
Bioresour Technol ; 357: 127352, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35605771

RESUMO

Starvation conditions were inevitably encountered by biological wastewater treatment systems. Four anaerobic starvation periods (5, 10, 16 and 20 days) were conducted to investigate the response mechanism of denitrifying phosphate-accumulating organisms (DPAOs) in order to dissect denitrifying phosphorus removal (DPR) decay processes. The denitrifying phosphorus removal performance suffered with the decay rate of 0.162 ± 0.022 d-1 during 20-day starved duration. Metabolic activity decay was responsible 93.20 ± 0.11% for the damaged DPR performance, while biomass decay contributed to 6.79 ± 0.68%. The genus Dechloromonas affiliated to DPAOs exerted stronger survival adaptability to starvation with the abundance increasing from 1.98% to 3.15%, depended upon the endogenous consumption of intracellular polymers. In view of PHA-driven DPR mechanism of DPAOs, the metabolic activity was restricted by the depletion of available PHA. These results revealed the poorer stability but preponderant recovery of DPR system encountering with starvation.


Assuntos
Desnitrificação , Fósforo , Reatores Biológicos , Nitrogênio , Fosfatos , Fósforo/metabolismo , Esgotos , Eliminação de Resíduos Líquidos
4.
Cell Death Dis ; 12(7): 708, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267179

RESUMO

The dysregulated microRNAs (miRNAs) are involved in diabetic retinopathy progression. Epithelial mesenchymal transition (EMT) and cell permeability are important events in diabetic retinopathy. However, the function and mechanism of miR-195 in EMT and cell permeability in diabetic retinopathy remain largely unclear. Diabetic retinopathy models were established using streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated ARPE-19 cells. Retina injury was investigated by hematoxylin-eosin (HE) staining. EMT and cell permeability were analyzed by western blotting, immunofluorescence, wound healing, and FITC-dextran assays. MiR-195 expression was detected via qRT-PCR. YY1, VEGFA, Snail1, and Smurf2 levels were detected via western blotting. The interaction relationship was analyzed via ChIP, Co-IP, or dual-luciferase reporter assay. The retina injury, EMT, and cell permeability were induced in STZ-induced diabetic mice. HG induced EMT and cell permeability in ARPE-19 cells. MiR-195, YY1, VEGFA, and Snail1 levels were enhanced, but Smurf2 abundance was reduced in STZ-induced diabetic mice and HG-stimulated ARPE-19 cells. VEGFA knockdown decreased Snail1 expression and attenuated HG-induced EMT and cell permeability. YY1 silence reduced VEGFA and Snail1 expression, and mitigated HG-induced EMT and cell permeability. YY1 could bind with VEGFA and Snail1, and it was degraded via Smurf2-mediated ubiquitination. MiR-195 knockdown upregulated Smurf2 to decrease YY1 expression and inhibited HG-induced EMT and cell permeability. MiR-195 targeted Smurf2, increased expression of YY1, VEGFA, and Snail1, and promoted HG-induced EMT and cell permeability. MiR-195 promotes EMT and cell permeability of HG-stimulated ARPE-19 cells by increasing VEGFA/Snail1 via inhibiting the Smurf2-mediated ubiquitination of YY1.


Assuntos
Retinopatia Diabética/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , MicroRNAs/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Células Epiteliais/patologia , Glucose/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Permeabilidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Transcrição YY1/genética
5.
Sci Total Environ ; 793: 148581, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34328985

RESUMO

Denitrifying phosphorus removal (DPR) technology is one of the most effective approach to simultaneously realize nitrogen (N) and phosphorus (P) removal from low COD/N ratio wastewater. Identifying the interaction of denitrifying phosphate-accumulating organisms (DPAOs), denitrifying glycogen organisms (DGAOs) and denitrifying ordinary heterotrophic organisms (DOHOs) is critical for optimizing denitrification and anoxic P uptake efficiency in DPR processes. In this study, a novel DPR system of anaerobic anoxic oxic - biological contact oxidation (AAO-BCO) was employed to dispose actual sewage with various influent COD/N ratios (3.5-6.7). High efficiency of TIN (76.5%) and PO43--P (94.4%) removal was observed when COD/N ratio was between 4.4 and 5.9. At the COD/N ratio of 5.7 ± 0.2, prominent DPR performance was verified by the superior DPR efficiency (88.7%) and anoxic phosphorus uptake capacity (PUADPAOs/ΔTIN = 1.84 mg/mg), which was further proved by the preponderance of DPAOs in C, N and P removal pathways. GAOs have a competitive advantage over PAOs for COD utilization at low COD/N ratio of 3.7 ± 0.2, which further limited the N removal efficiency. High proportion of N removal via DOHOs (21.2%) at the COD/N ratio of 6.5 ± 0.2 restrained the DPR performance, which should be attributed to the outcompete of DOHOs for NO3-. The nutrient removal mechanisms were explicated by stoichiometric calculation methodology to quantify the contribution of diverse functional microorganisms, contributing to improving the robustness of AAO-BCO system when facing the fluctuation of influent carbon source concentration.


Assuntos
Desnitrificação , Esgotos , Reatores Biológicos , Nitrogênio , Nutrientes , Fósforo , Eliminação de Resíduos Líquidos
6.
Bioresour Technol ; 315: 123839, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32731158

RESUMO

Denitrifying phosphorus removal sludge are usually faced with various famine environments in wastewater treatment plants (WWTPs). Endogenous metabolisms under aerobic, anoxic, and anaerobic starved conditions were characterized to investigate their impact on survival and activities of denitrifying polyphosphate accumulating organisms (DPAOs). DPAOs utilized intracellular polymers to survive and presented diverse consumed priorities of PHA types under various starvations. The biomass decay rate was approximately 2.7 and 1.7 times lower for aerobic condition than for anoxic and anaerobic conditions owing to the maximum maintenance energy requirement for aerobic condition (68.6 mmol/C-molVSS ATP). During short-term starvations, significant activity decay for anaerobic starved sludge was attributed to its distinctive endogenous metabolisms. For long-term starvations, the higher amounts and preponderant type of PHA (PHB) reserve favored to the greater DPAO activities for anoxic starved sludge. The results show that anoxic condition may be an implementable strategy for maintaining denitrifying phosphorus removal performance in WWTPs.


Assuntos
Fósforo , Esgotos , Biomassa , Reatores Biológicos , Desnitrificação , Eliminação de Resíduos Líquidos , Águas Residuárias
7.
Bioresour Technol ; 270: 746-750, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30301648

RESUMO

The success of combined partial nitritation (PN) and anammox process treating low-strength domestic wastewater depends on achieving a stable and efficient PN. In this study, desirable PN for domestic sewage with low temperature of 11.8-16.9 °C was achieved in a granular sludge reactor operated in anaerobic/aerobic (A/O) mode. Average nitrite accumulation ratio of 97.3% was obtained with an effluent nitrite/ammonium ratio of 1.2 for influent ammonium of 39.3-78.7 mg·L-1. Quantitative microbial analysis and activity batch test showed that nitrite oxidizing bacteria (NOB) were effectively suppressed, while ammonium oxidizing bacteria (AOB) were dominant. For the efficient suppression of NOB, A/O mode, aerobic phosphorus uptake and granular sludge could play important roles. Furthermore, high AOB activity was obtained with an average ammonium oxidation rate of 11.6 mg N·L-1·h-1, which could be due to the abundant psychrotolerant microorganisms, increased content of extracellular polymeric substances and relatively high dissolved oxygen condition of the reactor.


Assuntos
Esgotos , Compostos de Amônio/análise , Temperatura Baixa , Nitritos/análise , Oxirredução , Fósforo/análise , Esgotos/microbiologia , Águas Residuárias/microbiologia
8.
Bioresour Technol ; 243: 660-666, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28709071

RESUMO

Obtaining desirable partial nitritation (PN) is crucial for successful application of the combined PN and anammox process. In this study, the partial nitritation and simultaneously phosphorus removal (PNSPR)1 granular sludge reactor treating low-strength domestic sewage was rapidly started up in 67days through seeding denitrifying phosphorus removal (DPR)2 sludge. The nitrite/ammonium ratio in effluent was approximately 1 and the nitrite accumulation rate (NAR) was more than 95%, about 93% of orthophosphate was removed. The DPR sludge rich in phosphate accumulating organisms (PAOs) with few nitrifying bacteria could promote the achievement of PNSPR. Quantitative microbial analysis showed that the ammonium oxidizing bacteria (AOB) gene ratio in sludge increased from 0.21% to 3.43%, while nitrite oxidizing bacteria (NOB) gradually decreased to 0.07%. The average particle size of sludge increased from 114 to 421µm, indicating the formation of PNSPR granules. The high phosphorus content in sludge and phosphorus removal facilitated rapid granulation.


Assuntos
Reatores Biológicos , Fósforo , Esgotos , Nitrificação , Nitritos
9.
Phytomedicine ; 19(8-9): 677-81, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22483554

RESUMO

Polydatin is one of the most common encountered stilbenes of nature and a key component of the Chinese herb Polygonum cuspidatum. This study is to investigate the effects of polydatin on learning and memory impairments induced by chronic cerebral hypoperfusion in rats, as well as the potential mechanism. Both common carotid arteries and both vertebral arteries occlusion (four-vessel occlusion, 4-VO) induced severe cognitive deficits tested by water maze task, along with oxidative stress in hippocampus. Oral administration of polydatin for 30 days markedly attenuated cognitive deficits compared with the control (p < 0.05). Biochemical determination revealed that polydatin decreased the production of malondialdehyde (MDA) and significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT). Additionally, polydatin effectively alleviated the injuries of cultured neurons induced by oxygen-glucose deprivation (OGD). These results suggest that polydatin exhibit therapeutic potential for vascular dementia, which is most likely related, at least in part, to its anti-oxidant activity and the direct protection of neurons.


Assuntos
Demência Vascular/tratamento farmacológico , Glucosídeos/farmacologia , Aprendizagem/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estilbenos/farmacologia , Animais , Catalase/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Fallopia japonica/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA