Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37329776

RESUMO

Functional dyspepsia (FD) is one of the more common functional disorders, with a prevalence of 20-25 %. It seriously affects the quality life of patients. Xiaopi Hewei Capsule (XPHC) is a classic formula originated from the Chinese Miao minority. Clinical studies have demonstrated that XPHC can effectively alleviate the symptoms of FD, but the molecular mechanism has not been elucidated. The purpose of this work is to investigate the mechanism of XPHC on FD by integrating metabolomics and network pharmacology. The mice models of FD were established, and gastric emptying rate, small intestine propulsion rate, serum level of motilin and gastrin were evaluate to study the interventional effect of XPHC on FD. Next, a metabolomics strategy has been developed to screen differential metabolites and related metabolic pathways induced by XPHC. Then, prediction of active compounds, targets and pathways of XPHC in treating FD were carried out by commonly used network pharmacological method. Finally, two parts of the results were integrated to investigate therapeutic mechanism of XPHC on FD, which were preliminary validated based on molecular docking. Thus, twenty representative different metabolites and thirteen related pathways of XPHC in treating FD were identified. Most of these metabolites were restored using modulation after XPHC treatment. The results of the network pharmacology analysis showed ten crucial compounds and nine hub genes related to the treatment of FD with XPHC. The further integrated analysis focused on four key targets, such as albumin (ALB), epidermal growth factor receptor (EGFR), tumor necrosis factor (TNF) and roto-oncogene tyrosine-protein kinase Src (SRC), and three representative biomarkers such as citric acid, L-leucine and eicosapentaenoic acid. Furthermore, molecular docking results showed that ten bioactive compounds from XPHC have good binding interactions with the four key genes. The functional enrichment analysis indicated that the potential mechanism of XPHC in treating FD was mainly associated with energy metabolism, amino acid metabolism, lipid metabolism, inflammatory reactions and mucosal repair. Our work confirms that network pharmacology-integrated metabolomics strategyis a powerful means to reveal the therapeutic mechanisms of XPHC improves FD, which contribute its further scientific research.


Assuntos
Medicamentos de Ervas Chinesas , Dispepsia , Animais , Camundongos , Farmacologia em Rede , Biologia de Sistemas , Simulação de Acoplamento Molecular , Metabolômica , Medicamentos de Ervas Chinesas/farmacologia
2.
J Ethnopharmacol ; 301: 115836, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36252877

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xingnaojing(XNJ)injection is a traditional Chinese medicine injection with neuroprotective effect, which has been widely used in the treatment of stroke for many years. AIM OF THE STUDY: This study aimed to explore the potential mechanism of XNJ in cerebral ischemia mediated by ferroptosis using proteomics and in vivo and in vitro experiments. MATERIALS AND METHODS: After the rat model of middle cerebral artery occlusion (MCAO) was successfully established, they were randomly divided into model, XNJ, and deferoxamine (DFO) group. Triphenyl tetrazolium chloride (TTC) staining, Hematoxylin and eosin (H&E), and Nissl staining were used to observe the infarct area, pathological changes and the degree of neuronal apoptosis of rat brain. Proteins extracted from rat brain tissues were analyzed by quantitative proteomics using tandem mass tags (TMT). Western blotting and immunohistochemical assessment were used to measure the expression of ferroptosis-related proteins. In vitro, the SH-SY5Y cells were subjected to hypoxia (37°C/5% CO2/1% O2) for 24 h to observe the survival rate, and detect the reactive oxygen species (ROS) content and ferroptosis-related proteins. RESULTS: In TTC and H&E experiments, we found that XNJ drug treatment reduced the infarct volume and brain tissue damage in MCAO rats. Nissl staining also showed that compared with MCAO group rats, the Nissl bodies of brain tissue after XNJ drug intervention were clear with a 3.54-fold increased times, suggesting that XNJ improved cerebral infraction, and neurological deficits in MCAO rats. Proteomics identified 101 intersected differentially expressed proteins (DEPs). According to the bioinformatics analysis, these DEPs were closely related to ferroptosis. Further research indicated that MCAO-induced cerebral ischemia was alleviated by upregulating recombinant glutathione peroxidase 4 (GPX4), ferroportin (FPN) expression, Heme oxygenase-1 (HO-1) expression, and downregulating cyclooxygenase-2 (COX-2), transferring receptor (TFR) and divalent metal transporter-1 (DMT1) expression after XNJ treatment. In addition, in vitro experiment indicated that XNJ improved the survival rate of hypoxia-damaged SH-SY5Y cells. XNJ increased the level of GPX4 and inhibited the protein expression of COX-2 and TFR after cell hypoxia. Moreover, different concentrations of XNJ (0.25%, 0.5%, 1%) reduced the ROS content of hypoxic cells, suggesting that XNJ could inhibit hypoxia-induced cell damage by regulating the expression of ferroptosis-related proteins and decreasing the production of ROS. CONCLUSIONS: XNJ could promote the recovery of neurological function in MCAO rats and hypoxia SH-SY5Y cells by regulating ferroptosis.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ferroptose , Neuroblastoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Ratos , Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Ciclo-Oxigenase 2 , Hipóxia/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/tratamento farmacológico
3.
Phytomedicine ; 108: 154530, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36356328

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a life-threatening stroke subtype with high rates of disability and mortality. Naoxueshu oral liquid is a proprietary Chinese medicine that absorbs hematoma and exhibits neuroprotective effects in patients with ICH. However, the underlying mechanisms remain obscure. PURPOSE: Exploring and elucidating the pharmacological mechanism of Naoxueshu oral liquid in the treatment of ICH. STUDY DESIGN AND METHODS: The Gene Expression Omnibus (GEO) database was used to download the gene expression data on ICH. ICH-related hub modules were obtained by weighted gene co-expression network analysis (WGCNA) of differentially co-expressed genes (DEGs). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the obtained key modules to identify the ICH-related signaling pathways. Network pharmacology technology was applied to forecast the targets of Naoxueshu oral liquid and to establish a protein-protein interaction (PPI) network of overlapping targets between Naoxueshu oral liquid and ICH. Functional annotation and enrichment pathway analyses of the intersectional targets were performed using the omicsbean database. Finally, we verified the therapeutic role and mechanism of Naoxueshu oral liquid in ICH through molecular docking and experiments. RESULTS: Through the WGCNA analysis, combined with network pharmacology, it was found that immune inflammation was closely related to the early pathological mechanism of ICH. Naoxueshu oral liquid suppressed the inflammatory response; hence, it could be a potential drug for ICH treatment. Molecular docking further confirmed that the effective components of Naoxueshu oral liquid docked well with CD163. Finally, the experimental results showed that Naoxueshu oral liquid treatment in the ICH rat model attenuated neurological deficits and neuronal injury, decreased hematoma volume, and promoted hematoma absorption. In addition, Naoxueshu oral liquid treatment also significantly increased the levels of Arg-1, CD163, Nrf2, and HO-1 around hematoma after ICH. CONCLUSION: This study demonstrated that Naoxueshu oral liquid attenuated neurological deficits and accelerated hematoma absorption, possibly by suppressing inflammatory responses, which might be related to the regulation of Nrf2/CD163/HO-1 that interfered with the activation of M2 microglia, thus accelerating the clearance and decomposition of hemoglobin in the hematoma.


Assuntos
Hemorragia Cerebral , Fator 2 Relacionado a NF-E2 , Animais , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/genética , Hematoma/metabolismo , Hematoma/patologia , Ontologia Genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-36299773

RESUMO

San-Jiu-Wei-Tai granules (SJWTG) are a significant Chinese patent medicine for the treatment of chronic gastritis (CG), having outstanding advantages in long-term treatment; however, the chemical composition and potential mechanism have not been investigated until now. In this study, a rapid separation and identification method based on UPLC-QE-Orbitrap-MS was established, and 95 chemical components from SJWTGs were identified, including 6 chemical components of an unknown source that are not derived from the 8 herbs included in SJWTGs. The identified chemical components were subsequently analysed by network pharmacology, suggesting that the core targets for the treatment of CG with SJWTGs were EGFR, SRC, AKT1, HSP90AA1, MAPK1, and MAPK3 and thus indicating that SJWTGs could reduce the inflammatory response of gastric epithelial cells and prevent persistent chronic inflammation that induces cancerization by regulating the MAPK signalling pathway and the C-type lectin receptor signalling pathway as well as their upstream and downstream pathways in the treatment of CG. The key bioactive components in SJWTGs were identified as 2,6-bis(4-ethylphenyl)perhydro-1,3,5,7-tetraoxanaphth-4-ylethane-1,2-diol, a chemical component of an unknown source, murrangatin, meranzin hydrate, paeoniflorin, and albiflorin. The results of molecular docking showed the strong binding interaction between the key bioactive components and the core targets, demonstrating that the key bioactive components deserve to be further studied and considered as Q-markers. By acting on multiple targets, SJWTG is less susceptible to drug resistance during the long-term treatment of CG, indicating the advantage of Chinese patent medicines. Furthermore, the preventive effect of SJWTGs on gastric cancer also demonstrates the superiority of preventive treatment of disease with traditional Chinese medicine.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35815278

RESUMO

Aim: To elucidate the mechanism of action of berberine on ischaemic stroke based on network pharmacology, bioinformatics, and experimental verification. Methods: Berberine-related long noncoding RNAs (lncRNAs) were screened from public databases. Differentially expressed lncRNAs in ischaemic stroke were retrieved from the Gene Expression Omnibus (GEO) database. GSE102541 was comprehensively analysed using GEO2R. The correlation between lncRNAs and ischaemic stroke was evaluated by the mammalian noncoding RNA-disease repository (MNDR) database. The component-target-disease network and protein-protein interaction (PPI) network of berberine in the treatment of ischaemic stroke were constructed by using network pharmacology. We then performed gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses. Finally, according to the molecular docking analysis and the binding probability between the lncRNA and key proteins, the effectiveness of the results was further verified by in vitro experiments. Results: After matching stroke-related lncRNAs with berberine-related lncRNAs, four genes were selected as potential targets of berberine in the treatment of ischaemic stroke. Subsequently, lncRNA H19 was identified as the potential crucial regulatory lncRNA of berberine. Here, 52 target proteins of berberine in the treatment of ischaemic stroke were identified through database mining. Through topological analysis, 20 key targets were identified which were enriched in inflammation, apoptosis, and immunity. Molecular docking results showed that MAPK8, JUN, and EGFR were central genes. Finally, in vitro experiments demonstrated that lncRNA H19, p-JNK1/JNK1, p-c-Jun/c-Jun, and EGFR expressions were significantly increased in hypoxia-treated SH-SY5Y cells and were restored by berberine treatment. Conclusion: The potential targets and biological effects of berberine in the treatment of ischaemic stroke were predicted in this study. The lncRNA H19/EGFR/JNK1/c-Jun signalling pathway may be a key mechanism of berberine-induced neuroprotection in ischaemic stroke.

6.
J Sep Sci ; 45(18): 3382-3392, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35851721

RESUMO

Epimedium has a wide range of clinical applications; however, there have been numerous reports of adverse reactions in recent years, which has resulted in it being changed from a widely recognized "nontoxic" to a "potentially toxic" traditional Chinese medicine. The combination of Epimedium and Ligustri lucidi fructus is commonly used in the clinic. The purpose of this study was to investigate the pharmacokinetic characteristics of Epimedium and Ligustri lucidi fructus to explore the possible synergism and reduction in toxicity. Based on liquid chromatography tandem mass spectrometry, a method was established for the determination of icariin, epimedin A, epimedin B, epimedin C, baohuoside Ⅰ, and specnuezhenide in biological samples and was successfully applied to study the pharmacokinetics of the drug pair. The results showed that the five flavonoids (specnuezhenide could not be detected) could be rapidly absorbed into the blood, and the second peak time in vivo was earlier after the combination, indicating that the metabolic pathway may be changed. In addition, combination with Ligustri lucidi fructus could significantly reduce the concentration of 5 flavonoids in vivo and increase their elimination rate, which may attenuate their virulence, thus providing a reference for the rational clinical use of Epimedium.


Assuntos
Medicamentos de Ervas Chinesas , Epimedium , Ligustrum , Cromatografia Líquida de Alta Pressão , Flavonoides , Ligustrum/química , Medicina Tradicional Chinesa
7.
Nat Prod Res ; 36(10): 2554-2558, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33729065

RESUMO

Bailemian capsule (BLMC) is a Chinese patent drug for treating insomnia with excellent curative effects. But there are few researches on it. In this research, a rapid separation and identification method using UPLC-QE-Orbitrap-MS was established, and 228 identified compounds were separated within 18 min. The structures of compounds were preliminarily determined by comparing the retention time and fragmentation law. Furthermore, multiple databases were used to integrate the compound targets of BLMC and the disease targets related to insomnia. After the intersection of the two sets of targets, a protein-protein interaction network and a drug-target-disease pharmacological network were established, then using the DAVID database to perform GO analysis and KEGG analysis on the common targets to find related pathways. Finally, a total of 289 common targets and 136 pathways were found to participate in the mechanism.


Assuntos
Medicamentos de Ervas Chinesas , Distúrbios do Início e da Manutenção do Sono , Bases de Dados Factuais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Projetos de Pesquisa , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Tecnologia
8.
Chin J Nat Med ; 19(12): 881-899, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34961587

RESUMO

The current study was designed to explore the brain protection mechanism of Xinglou Chengqi Decoction (XCD) based on gut microbiota analysis and network pharmacology. A transient middle cerebral artery occlusion (MCAO) model of mice was established, followed by behavioral evaluation, TTC and TUNEL staining. Additionally, to investigate the effects of gut microbiota on neurological function after stroke, C57BL/6 mice were treated with anti-biotic cocktails 14 days prior to ischemic stroke (IS) to deplete the gut microbiota. High-throughput 16S rDNA gene sequencing, metabonomics technique, and flow multifactor technology were used to analyze bacterial communities, SCFAs and inflammatory cytokines respectively. Finally, as a supplement, network pharmacology and molecular docking were applied to fully explore the multicomponent-multitarget-multichannel mechanism of XCD in treating IS, implicated in ADME screening, target identification, network analysis, functional annotation, and pathway enrichment analysis. We found that XCD effectively improved neurological function, relieved cerebral infarction and decreased the neuronal apoptosis. Moreover, XCD promoted the release of anti-inflammatory factor like IL-10, while down-regulating pro-inflammatory factors such as TNF-α, IL-17A, and IL-22. Furthermore, XCD significantly increased the levels of short chain fatty acids (SCFAs), especially butyric acid. The mechanism might be related to the regulation of SCFAs-producing bacteria like Verrucomicrobia and Akkermansia, and bacteria that regulate inflammation like Paraprevotella, Roseburia, Streptophyta and Enterococcu. Finally, in the network pharmacological analysis, 51 active compounds in XCD and 44 intersection targets of IS and XCD were selected. As a validation, components in XCD docked well with key targets. It was obviously that biological processes were mainly involved in the regulation of apoptotic process, inflammatory response, response to fatty acid, and regulation of establishment of endothelial barrier in GO enrichment. XCD can improve neurological function in experimental stroke mice, partly due to the regulation of gut microbiota. Besises, XCD has the characteristic of "multi-component, multi-target and multi-channel" in the treatment of IS revealed by network pharmacology and molecular docking.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Acidente Vascular Cerebral , Animais , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Farmacologia em Rede , Acidente Vascular Cerebral/tratamento farmacológico
9.
J Sep Sci ; 44(21): 3933-3958, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34473407

RESUMO

Baihe Dihuang decoction is a commonly used herbal formula to treat depression and insomnia in traditional Chinese medicine. This study established a liquid chromatography-mass spectrometry method to investigate the potential active ingredients and the components absorbed in the blood and brain tissue of mice. Using a new data processing method, 94 chemical components were identified, 33 and 9 of which were absorbed in the blood and brain. More interestingly, we analyzed the substance changes during co-decoction and the characteristics of the compounds absorbed in the blood and brain. The results show that 71 newly generated chemical components were discovered from co-decoction: 38 with fragment information and five absorbed in the blood. Ultimately, the results of molecular docking show that these components have excellent performance in proteins of γ-aminobutyric acid, serotonin and melatonin receptors. The docking results of emodin with Monoamine Oxidase A and Melatonin Receptor 1A, and luteolin with Solute Carrier Family 6 Member 4, Glyoxalase I, Monoamine Oxidase B and Melatonin Receptor 1A, may explain the mechanism of action of Baihe Dihuang decoction in treating insomnia and depression. Overall, our research results may provide novel perspectives for further understanding of the effective substances in Baihe Dihuang decoction.


Assuntos
Cromatografia Líquida/métodos , Medicamentos de Ervas Chinesas , Espectrometria de Massas/métodos , Animais , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular
10.
Artigo em Inglês | MEDLINE | ID: mdl-34333214

RESUMO

Zuojin decoction (ZJD) is a classic pair composed of Coptidis Rhizoma and Evodiae Fructus, which is suitable for treating gastrointestinal diseases and tumours, etc. In recent years, scientists have been widely focused on research into the treatment of liver cancer using ZJD; however, the effective substances have not yet been comprehensively elucidated. The difference between the co-decoction and the single decoction of ZJD is revealed in this paper based on the UPLC-QE-Orbitrap-MS, and the chemical components absorbed into the blood and liver of mice have been analyzed simultaneously. In addition, the combination of prototype components absorbed into the liver with liver cancer-related targets has been performed via molecular docking to explore the mechanism of ZJD in treating liver cancer. By comparing the co-decoction and single decoction of ZJD, 44 new components appeared during co-decoction and 76 known chemical compounds have been identified at the same time. It has been confirmed that 35 known components and 11 new components were absorbed into the blood. Furthermore, 20 known components were discovered from the sample of liver tissue. Molecular docking results showed that 3-O-feruloylquinic acid has good conjugation with Bcl-2, Stat3, mTOR, and mmp9. Catechin has the lowest binding energy with CDK6 and ß-catenin. The study provides data for the further confirmation of the material basis and mechanism of ZJD in treating liver cancer, and provides a new idea for the researches on the compatibility mechanism of prescriptions of traditional Chinese medicine.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Interações Ervas-Drogas , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Espectrometria de Massas , Medicina Tradicional Chinesa , Camundongos , Simulação de Acoplamento Molecular
11.
Front Pharmacol ; 12: 654807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995072

RESUMO

Shuangxia decoction is an effective traditional Chinese medicine formula for treating insomnia. Up to now, there has not been any report about the effective substances. An omics data processing method based on mass spectrometry technology is used to explore the chemical composition changes of Shuangxia decoction, the components absorbed into the blood and brain, and to explore the anti-insomnia mechanism based on molecular docking technology. Forty-nine chemical components in Shuangxia decoction have been identified, and 51 new components generated by co-decoction have been discovered. It was found that 7,404 compounds of Shuangxia decoction were absorbed into the blood. Forty kinds of known compounds were quickly identified, and 15 new compounds generated by co-decoction were also found to be absorbed into the blood. By using UPLC-MS/MS method, it was confirmed that 10 compounds were absorbed into the blood and 9 compounds were absorbed into the brain. Furthermore, it is found that rosmarinic acid is mainly distributed in the hypothalamus and striatum, and caffeic acid is mainly distributed in the hypothalamus, striatum, and hippocampus. Molecular docking results showed rosmarinic acid, danshensu, and HMLA with GABAA receptor have excellent binding characteristics, even surpassing the proligand. Danshensu and HMLA with dopamine D2 receptor also showed good binding energy. Our findings will help to further confirm the mechanism of Shuangxia decoction for relieving insomnia, and we also establish a novel data processing method for supplementing the mechanism of the efficacy of other traditional Chinese medicine formula.

12.
ACS Omega ; 6(6): 4495-4505, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33623855

RESUMO

Phlomis brevidentata H.W.Li Radix (PbR) is a rare traditional Tibetan medicine, and it is widely used in the Chinese Tibetan region for the treatment of pharyngitis, pneumonia, and so forth. Nevertheless, there is very little research on its modern pharmacy, and the active ingredients and mechanisms against these diseases remain unknown. In this study, we employed the qualitative analysis and pharmacokinetic based on LC-MS technology and network pharmacology to explore the active ingredients and mechanisms of PbR for treatment of pneumonia. Ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-Q-TOF/MS) methodology was applied to identify the chemical composition of PbR. Meanwhile, a UPLC-MS/MS method was developed to quantify three active constituents (sesamoside, shanzhiside methyl ester, and barlerin) in rat plasma for the pharmacokinetic analysis after oral administration of PbR. Finally, in order to clarify the anti-pneumonia mechanism of this rare Tibetan medicine, a comprehensive network pharmacology strategy was applied. As a result, a total of 23 compounds were identified in PbR, including 14 iridoid glycosides, 7 phenylethanoid glycosides, and 2 other kinds of compounds. Pharmacokinetic studies have shown that the three compounds exhibit extremely similar pharmacokinetic characteristics, possibly due to their highly analogous chemical structure. We speculate that the iridoid glycosides may be the main active component in PbR. Then, the three iridoid glycoside constituents absorbed into blood were subjected to network pharmacology analysis for treatment of pneumonia. Compound-target-disease, gene ontology bioanalysis, KEGG pathway, and other network pharmacology analysis methods were applied to reveal that five main targets of the three iridoid glycosides, namely, GAPDH, ALB, MAPK1, AKT1, and EGFR, were significant in the regulation of the above bioprocesses and pathways. These results provide a basis for elucidating the bioactive compounds and the pharmacological mechanisms of P. brevidentata H.W.Li radix under clinical applications.

13.
J Ethnopharmacol ; 272: 113943, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33617967

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xuesaitong (XST) is a traditional Chinese medicine injection with neuroprotective properties and has been extensively used to treat stroke for many years. The main component of XST is Panax notoginseng saponins (PNS), which is the main extract of the Chinese herbal medicine Panax notoginseng. AIM OF THE STUDY: In this study, we investigated whether XST provided long-term neuroprotection by inhibiting neurite outgrowth inhibitor-A (Nogo-A) and the ROCKII pathway in experimental rats after middle cerebral artery occlusion (MCAO) and in SH-SY5Y cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS: Rats with permanent MCAO were administered XST, Y27632, XST plus Y27632, and nimodipine for 14 and 28 days. Successful MCAO onset was confirmed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Neurological deficit score (NDS) was used to assess neurological impairment. Hematoxylin-eosin (HE) staining and immunohistochemical (IHC) analysis of synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) were performed to evaluate cerebral ischemic injury and the neuroprotective capability of XST. Nogo-A levels and the ROCKII pathway were detected by IHC analysis, western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR) to explore the protective mechanism of XST. OGD/R model was established in SH-SY5Y cells. Cell counting kit 8 (CCK8) was applied to detect the optimum OGD time and XST concentration. The expression levels Nogo-A and ROCKII pathway were determined using western blotting. RESULTS: Our results showed that XST reduced neurological dysfunction and pathological damage, promoted weight gain and synaptic regeneration, reduced Nogo-A mRNA and protein levels, and inhibited the ROCKII pathway in MCAO rats. CCK8 assay displayed that the optimal OGD time and optimal XST concentration were 7 h and 20 µg/mL respectively in SH-SY5Y cells. XST could evidently inhibit OGD/R-induced Nogo-A protein expression and ROCKII pathway activation in SH-SY5Y cells. CONCLUSIONS: The present study suggested that XST exerted long-term neuroprotective effects that assisted in stroke recovery, possibly through inhibition of the ROCKII pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Saponinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Proteínas Nogo/antagonistas & inibidores , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Panax notoginseng/química , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Sinaptofisina/metabolismo , Fatores de Tempo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
14.
Front Pharmacol ; 12: 830558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095537

RESUMO

Background: Zhi-Zi-Hou-Po Decoction (ZZHPD), a classic traditional Chinese medicine (TCM) formula, is clinically used to treat insomnia and depression. The analysis strategy based on the concept of co-decoction of TCM is helpful to analyse the effective substances of TCM formula in depth. Aim of the study: This manuscript intends to take ZZHPD as a model sample to explore the phenomenon of co-decoction of complex formula in the combination of liquid chromatography-mass spectrometry (LC-MS) technology, data analysis, and molecular docking. Materials and methods: In the current research, an innovative LC-MS method has been established to study the active ingredients in ZZHPD, and to identify the ingredients absorbed into the blood and brain tissues of mice. And molecular docking was used to study the binding pattern and affinities of known compounds of the brain tissue toward insomnia related proteins. Results: Based on new processing methods and analysis strategies, 106 chemical components were identified in ZZHPD, including 28 blood components and 18 brain components. Then, by comparing the different compounds in the co-decoction and single decoction, it was surprisingly found that 125 new ingredients were produced during the co-decoction, 2 of which were absorbed into the blood and 1 of which was absorbed into brain tissue. Ultimately, molecular docking studies showed that 18 brain components of ZZHPD had favourable binding conformation and affinity with GABA, serotonin and melatonin receptors. The docking results of GABRA1 with naringenin and hesperidin, HCRTR1 with naringenin-7-O-glucoside, poncirenin and genipin 1-gentiobioside, and luteolin with SLC6A4, GLO1, MAOB and MTNR1A may clarify the mechanism of action of ZZHPD in treating insomnia and depression. Conclusion: Our study may provide new ideas for further exploring the effective substances in ZZHPD.

15.
PLoS One ; 15(10): e0240022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002038

RESUMO

Neurodegenerative diseases (NDDs) are becoming a major threat to public health, according to the World Health Organization (WHO). The most common form of NDDs is Alzheimer's disease (AD), boasting 60-70% share. Although some debates still exist, excessive aggregation of ß-amyloid protein (Aß) and neurofibrillary tangles has been deemed one of the major causes for the pathogenesis of AD. A growing number of evidences from studies, however, have suggested that reactive oxygen species (ROS) also play a key role in the onset and progression of AD. Although scientists have had some understanding of the pathogenesis of AD, the disease still cannot be cured, with existing treatment only capable of providing a temporary relief at best, partly due to the obstacle of blood-brain barrier (BBB). The study was aimed to ascertain the neuroprotective effect of thermal cycle hyperthermia (TC-HT) against hydrogen peroxide (H2O2) and Aß-induced cytotoxicity in SH-SY5Y cells. Treating cells with this physical stimulation beforehand significantly improved the cell viability and decreased the ROS content. The underlying mechanisms may be due to the activation of Akt pathway and the downstream antioxidant and prosurvival proteins. The findings manifest significant potential of TC-HT in neuroprotection, via inhibition of oxidative stress and cell apoptosis. It is believed that coupled with the use of drugs or natural compounds, this methodology can be even more effective in treating NDDs.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Peróxido de Hidrogênio/toxicidade , Hipertermia Induzida , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Insulisina/metabolismo , Metaloproteinases da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
16.
Brain Res Bull ; 164: 314-324, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858128

RESUMO

Inflammatory responses play an extraordinary role in the pathogenesis of cerebrovascular and neurological disorders. Baicalin is one of the important flavonoids, which is extracted from Scutellaria baicalensis Georgi. Recently, numerous in vivo and in vitro studies have shown that baicalin has salutary effects for anti-inflammatory and immunomodulatory and has been demonstrated to exert beneficial therapeutic properties in cerebrovascular and neurological diseases. In this review, we aim to discuss that baicalin exerts anti-inflammatory effects through multiple pathways and targets, thus affecting the production of a variety of inflammatory cytokines and neuroprotective process of neurological diseases; furthermore, the related targets of the anti-inflammatory effects of baicalin were analyzed via using the tools of network pharmacology, to provide theoretical basis and innovative ideas for the future clinical application of baicalin.


Assuntos
Anti-Inflamatórios/uso terapêutico , Transtornos Cerebrovasculares/tratamento farmacológico , Flavonoides/uso terapêutico , Fatores Imunológicos/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Fatores Imunológicos/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-32802113

RESUMO

OBJECTIVE: This study investigated whether Panax notoginseng saponins (PNS) extracted from Panax notoginseng (Bruk.) F. H. Chen played a neuroprotective role by affecting the EGFR/PI3K/AKT pathway in oxygen-glucose deprived (OGD) SH-SY5Y cells. MATERIALS AND METHODS: Different groups of OGD SH-SY5Y cells were treated with varying doses of PNS, PNS + AG1478 (a specific inhibitor of EGFR), or AG1478 for 16 hours. CCK8, Annexin V-FITC/PI apoptosis analysis, and LDH release analysis were used to determine cell viability, apoptosis rate, and amounts of LDH. Quantitative real-time PCR (q-RT-PCR) and western blotting were used to measure mRNA and proteins levels of p-EGFR/EGFR, p-PI3K/PI3K, and p-AKT/AKT in SH-SY5Y cells subjected to OGD. RESULTS: PNS significantly enhanced cell viability, reduced apoptosis, and weakened cytotoxicity by inhibiting the release of LDH. The mRNA expression profiles of EGFR, PI3K, and AKT showed no difference between model and other groups. Additionally, ratios of p-EGFR, p-PI3K, and p-AKT to EGFR, PI3K, and AKT proteins expression, respectively, all increased significantly. CONCLUSIONS: These findings indicate that PNS enhanced neuroprotective effects by activating the EGFR/PI3K/AKT pathway and elevating phosphorylation levels in OGD SH-SY5Y cells.

18.
J Sep Sci ; 43(16): 3333-3348, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32496008

RESUMO

In recent years, direct and indirect evidence has been found of the efficacy of the traditional Chinese medicine Bergenia purpurascens in treating arthritis and osteoarthritis. Several major components, such as bergenin and 11-O-galloylbergenin, have good anti-inflammatory activity. Since research on the chemical components of Bergenia purpurascens and related mechanisms for the treatment of osteoarthritis has never been performed, this study aimed to analyze the chemical components of Bergenia purpurascens through ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry technology and the UNIFI screening platform to predict the underlying mechanisms in treating osteoarthritis by analyzing the network pharmacology. In total, 43 chemical constituents were identified, mainly flavonoids (18), phenolic glycosides (13), and organic acids (7). Among them, 16 components were found in Bergenia purpurascens for the first time. Through the analysis of network pharmacology, several potential candidate targets and pathways were initially predicted, including AKT1, MAPK1, and MAPK3, as well as the apoptosis, estrogen, and MAPK signaling pathways. Bergenin, 11-O-galloylbergenin, arbutin, catechin-3-O-gallate, and other components play a synergistic role in treating osteoarthritis. This study analyzed the chemical components of Bergenia purpurascens and preliminarily revealed potential mechanisms of treating osteoarthritis, providing a basis for further evaluating the drug's efficacy.


Assuntos
Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Humanos , Espectrometria de Massas , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Estrutura Molecular , Osteoartrite/metabolismo , Fatores de Tempo
19.
Metab Brain Dis ; 35(2): 315-325, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786727

RESUMO

As a Traditional Chinese Medicine (TCM), Shuangxia Decoction (SXD) has been used to treat insomnia in oriental countries for more than thousands of years and it presents remarkable clinical effects. However, its active pharmacological fraction and the mechanism of sedative-hypnotic effects have not been explored. In this paper, we investigated active pharmacological fraction and revealed the detailed mechanisms underlying the sedative-hypnotic effects of SXD. It showed that SXD water extract compared to ethanol extract possessed better sedative effects on locomotion activity in normal mice and increased sleep duration in subhypnotic dose of sodium pentobarbital-treated mice. SXD alleviated p-chlorophenylalanine (PCPA) -induced insomnia by increasing the content of 5-HT in cortex [F (4, 55) = 12.67], decreasing the content of dopamine (DA) and norepinephrine (NE). Furthermore, SXD enhanced the expression of 5-HT1A and 5-HT2A receptors in hypothalamic and reduced serum levels of IL-1,TNF-α [F (5, 36) = 15.58]. In conclusion, these results indicated that SXD produced beneficial sedative and hypnotic bioactivities mediated by regulating the serotonergic and immune system.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Fenclonina/toxicidade , Imunidade Celular/imunologia , Receptores de Serotonina/imunologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/imunologia , Animais , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Imunidade Celular/efeitos dos fármacos , Masculino , Camundongos , Pinellia , Prunella , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores de Serotonina/biossíntese , Serotonina/biossíntese , Antagonistas da Serotonina/toxicidade , Agonistas do Receptor de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/uso terapêutico , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente
20.
Int J Oncol ; 55(3): 617-628, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31322205

RESUMO

Hyperthermia (HT) has shown potential in cancer therapy. In particular, it appears to sensitize cancer cells to chemotherapy. However, a major concern associated with HT is that the thermal dosage applied to the tumor cells may also harm the normal tissue cells. Besides, the drugs used in HT are conventional chemotherapy drugs, which may cause serious side effects. The present study demonstrated a novel methodology in HT therapy called thermal cycle (TC)­HT. With this strategy, a therapeutic window with a maximum synergistic effect was created by combining TC­HT with natural compounds, with minimal unwanted cell damage. The natural compound propolis was selected, and the synergistic anticancer effect of TC­HT and propolis was investigated in pancreatic cancer cells. The present results demonstrated for the first time that TC­HT could enhance the anticancer effect of propolis on PANC­1 cancer cells through the mitochondria­dependent apoptosis pathway and cell cycle arrest. Combined treatment greatly suppressed mitochondrial membrane potential, which is an important indicator of damaged and dysfunctional mitochondria. Furthermore, the cell cycle­regulating protein cell division cycle protein 2 was downregulated upon combined treatment, which prevented cellular progression into mitosis. The present study offers the first report, to the best of our knowledge, on the combination of TC­HT with a natural compound for pancreatic cancer treatment. It is anticipated that this methodology may be a starting point for more sophisticated cancer treatments and may thereby improve the quality of life of many patients with cancer.


Assuntos
Proteína Quinase CDC2/metabolismo , Hipertermia Induzida/métodos , Neoplasias Pancreáticas/metabolismo , Própole/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA