Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Autophagy ; 18(8): 1879-1897, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34890308

RESUMO

Mitophagy is a type of selective macroautophagy/autophagy that degrades dysfunctional or excessive mitochondria. Regulation of this process is critical for maintaining cellular homeostasis and has been closely implicated in acquired drug resistance. However, the regulatory mechanisms and influences of mitophagy in cancer are still unclear. Here, we reported that inhibition of CDK9 blocked PINK1-PRKN-mediated mitophagy in HCC (hepatocellular carcinoma) by interrupting mitophagy initiation. We demonstrated that CDK9 inhibitors promoted dephosphorylation of SIRT1 and promoted FOXO3 protein degradation, which was regulated by its acetylation, leading to the transcriptional repression of FOXO3-driven BNIP3 and impairing the BNIP3-mediated stability of the PINK1 protein. Lysosomal degradation inhibitors could not rescue mitophagy flux blocked by CDK9 inhibitors. Thus, CDK9 inhibitors inactivated the SIRT1-FOXO3-BNIP3 axis and PINK1-PRKN pathway to subsequently block mitophagy initiation. Moreover, CDK9 inhibitors facilitated mitochondrial dysfunction. The dual effects of CDK9 inhibitors resulted in the destruction of mitochondrial homeostasis and cell death in HCC. Importantly, a novel CDK9 inhibitor, oroxylin A (OA), from Scutellaria baicalensis was investigated, and it showed strong therapeutic potential against HCC and a striking capacity to overcome drug resistance by downregulating PINK1-PRKN-mediated mitophagy. Additionally, because of the moderate and controlled inhibition of CDK9, OA not led to extreme repression of general transcription and appeared to overcome the inconsistent anti-HCC efficacy and high normal tissue toxicity that was associated with existing CDK9 inhibitors. All of the findings reveal that mitophagy disruption is a promising strategy for HCC treatment and OA is a potential candidate for the development of mitophagy inhibitors.Abbreviations: BNIP3: BCL2 interacting protein 3; CCCP: carbonyl cyanide p-trichloromethoxy-phenylhydrazone; CDK9: cyclin dependent kinase 9; CHX: cycloheximide; CQ, chloroquine; DFP: deferiprone; DOX: doxorubicin; EBSS: Earle's balanced salt solution; E64d: aloxistatin; FOXO3: forkhead box O3; HCC: hepatocellular carcinoma; HepG2/ADR: adriamycin-resistant HepG2 cells; MMP: mitochondrial membrane potential; mito-Keima: mitochondria-targeted and pH-sensitive fluorescent protein; MitoSOX: mitochondrial reactive oxygen species; OA: oroxylin A; PB: phosphate buffer; PDX: patient-derived tumor xenograft; PINK1: PTEN induced kinase 1; POLR2A: RNA polymerase II subunit A; p-POLR2A-S2: Ser2 phosphorylation of RNA polymerase II subunit A; PRKN: parkin RBR E3 ubiquitin protein ligase; SIRT1: sirtuin 1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Autofagia , Carcinoma Hepatocelular/patologia , Quinase 9 Dependente de Ciclina/metabolismo , Proteína Forkhead Box O3 , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitofagia/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/farmacologia , Sirtuína 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Eur J Pharmacol ; 876: 173064, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179085

RESUMO

The selective BCR-ABL tyrosine kinase inhibitor imatinib is one of the first-line therapies in the management of chronic myeloid leukaemia (CML). However, acquired resistance to this inhibitor, which is especially conferred by the T315I point mutation in BCR-ABL, impedes the efficacy of imatinib therapy. Therefore, the discovery and development of novel agents to overcome imatinib resistance is urgently needed. Pseudolaric acid B (PAB), a small molecule isolated from the traditional Chinese medicine Cortex pseudolaricis, has been reported to be a potential candidate for immune disorders and cancer treatment. However, its effects on CML and the involved molecular mechanism have not been reported. In the current study, by performing both in vitro and in vivo experiments in CML cells, we showed that PAB blocked the cell cycle at G2/M phase and subsequently activated the caspase pathway, cleaved the BCR-ABL protein and inhibited the BCR-ABL downstream pathways, ultimately leading to cell proliferation inhibition, cytotoxicity and apoptosis. These events were observed in both imatinib-sensitive and imatinib-insensitive CML cell lines. Moreover, PAB decreased the viability of primary blood mononuclear cells from CML patients and induced apoptosis in these cells. Our findings suggest that PAB could be used as a novel agent to sensitize imatinib-resistant CML.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Mitose/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas , Feminino , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA