Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Gu Shang ; 36(9): 859-65, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37735079

RESUMO

OBJECTIVE: To investigate the clinical effect of "Tianji" orthopedic robot-assisted percutaneous vertebro plasty(PVP) surgery in the treatment of upper thoracic osteoporotic fracture. METHODS: A retrospective analysis was performed on 32 patients with upper thoracic osteoporotic fracture who underwent PVP surgery in Shenzhen Hospital of Traditional Chinese Medicine from August 2016 to June 2022. There were 8 males and 24 females, ranging in age from 58 to 90 years old, with a mean of (67.75±12.27) years old. Fifteen patients were treated with robot-assisted PVP surgery (robot group), including 3 males and 12 females, with an average age of (68.5±10.3) years. Fracture location:1 case of T2 fracture, 1 case of T3 fracture, 3 cases of T4 fracture, 3 cases of T5 fracture, and 7 cases of T6 fracture. The follow-up period ranged from 1.0 to 3.0 months, with a mean of (1.6±0.7) months. Seventeen patients underwent routine PVP surgery (conventional group), including 5 males and 12 females, with an average age of (66.8±11.6) years old. Fracture location:1 case of T1 fracture, 5 cases of T4 fracture, 2 cases of T5 fracture and 9 cases of T6 fracture. The follow-up period ranged from 0.5 to 4.0 months, with a mean of (1.5±0.6) months. Preoperative and postoperative visual analogue scale(VAS) and Oswestry disability index(ODI) scores were compared between the two groups, and the number of punctures, perspective times, operation time, intraoperative blood loss, bone cement distribution, bone cement leakage, and intraoperative radiation dose were compared between the two groups. RESULTS: Number of punctures times, perspective times, operation time, intraoperative blood loss, bone cement distribution, bone cement leakage and intraoperative radiation dose in the robot group were all significantly better than those in the conventional group(P<0.05). VAS of 2.03±0.05 and ODI of (22.16±4.03) % in the robot group were significantly better than those of the robot group before surgery, which were (8.67±0.25) score and (79.40±7.72)%(t=100.869, P<0.001;t=25.456, P<0.001). VAS of 2.17±0.13 and ODI of (23.88±6.15)% in the conventional group were significantly better than those before surgery, which were (8.73±0.18) score and (80.01±7.59)%(t=121.816, P<0.001;t=23.691, P<0.001). There was no significant difference in VAS and ODI between the two groups after operation (t=-3.917, P=0.476;t=-0.922, P=0.364). CONCLUSION: Robot-assisted PVP in the treatment of upper thoracic osteoporotic fractures can further improve surgical safety, reduce bone cement leakage, and achieve satisfactory clinical efficacy.


Assuntos
Fraturas por Osteoporose , Robótica , Feminino , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Fraturas por Osteoporose/cirurgia , Perda Sanguínea Cirúrgica , Cimentos Ósseos , Estudos Retrospectivos , Vértebras Torácicas/cirurgia
2.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 34(2): 209-13, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24672947

RESUMO

OBJECTIVE: To observe the effect of single herb pilose antler (PA) on the expression of Smad2 and Smad3 in the cartilage of osteoarthritis (OA) rats. METHODS: One hundred 3-month old female healthy SD rats, (200 +/- 20) g, were recruited and routinely fed for 1 week. They were randomly divided into 5 groups, i.e., the low dose PA group, the high dose PA group, the normal saline control group, the model group, and the normal control group, 20 in each group. The model was prepared using classic Hulth method except the normal control group. After 6-week modeling, the model was confirmed successful by pathologic observation. PA at 0.021 g/100 g and 0.084 g/1 00 g was given by gastrogavage to rats in the low dose PA group and the high dose PA group respectively. Normal saline was administered to those in the normal saline control group. No treatment was given to rats in the normal control group and the model group. Bilateral knee cartilages were harvested at week 2,4, and 6. mRNA and protein expressions of Smad2 and Smad3 were detected by immunohistochemical assay, fluorescent quantitative PCR, and Western blot. RESULTS: OA model was successfully prepared by pathological observation. Results of immunohistochemical assay showed that Smad2 and Smad3 expressed extensively in the cartilage, and located inside the chondrocyte membrane. Compared with the model group, mRNA expression of Smad2 and Smad3 obviously increased in the low dose PA group and the high dose PA group at week 2, 4, and 6, showing statistical difference (P < 0.05). Compared with the same group at week 4 after gastrogavage, mRNA expression of Smad2 and Smad3 obviously decreased in the low dose PA group and the high dose PA group at week 6, showing statistical difference (P < 0.05). Compared with the model group, protein expression of Smad2 and Smad3 obviously increased in the chondrocytes of the low dose PA group and the high dose PA group at week 2 and 4, showing statistical difference (P < 0.01). Compared with the same group at week 2 after gastrogavage, protein expression of Smad2 and Smad3 obviously increased in the low dose PA group and the high dose PA group at week 4, showing statistical difference (P < 0.01). Compared with the same group at week 4 after gastrogavage, protein expression of Smad2 and Smad3 obviously decreased in the low dose PA group and the high dose PA group at week 6, showing statistical difference (P < 0.01). CONCLUSIONS: (1) The pilose antler could repair cartilages by regulating mRNA and protein expressions of Smad2 and Smad3. (2) Up-regulating mRNA and protein expressions of Smad2 and Smad3 might be one of important mechanisms for the pathogenesis of OA.


Assuntos
Chifres de Veado/química , Cartilagem/metabolismo , Condrócitos/metabolismo , Medicina Tradicional Chinesa , Osteoartrite/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Animais , Cartilagem/citologia , Condrócitos/efeitos dos fármacos , Feminino , Osteoartrite/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA