Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 43(2): 470-482, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33850276

RESUMO

Aerobic glycolysis, also known as the Warburg effect, is a hallmark of cancer cell glucose metabolism and plays a crucial role in the activation of various types of immune cells. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of D-glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate in the 6th critical step in glycolysis. GAPDH exerts metabolic flux control during aerobic glycolysis and therefore is an attractive therapeutic target for cancer and autoimmune diseases. Recently, GAPDH inhibitors were reported to function through common suicide inactivation by covalent binding to the cysteine catalytic residue of GAPDH. Herein, by developing a high-throughput enzymatic screening assay, we discovered that the natural product 1,2,3,4,6-penta-O-galloyl-ß-D-glucopyranose (PGG) is an inhibitor of GAPDH with Ki = 0.5 µM. PGG blocks GAPDH activity by a reversible and NAD+ and Pi competitive mechanism, suggesting that it represents a novel class of GAPDH inhibitors. In-depth hydrogen deuterium exchange mass spectrometry (HDX-MS) analysis revealed that PGG binds to a region that disrupts NAD+ and inorganic phosphate binding, resulting in a distal conformational change at the GAPDH tetramer interface. In addition, structural modeling analysis indicated that PGG probably reversibly binds to the center pocket of GAPDH. Moreover, PGG inhibits LPS-stimulated macrophage activation by specific downregulation of GAPDH-dependent glucose consumption and lactate production. In summary, PGG represents a novel class of GAPDH inhibitors that probably reversibly binds to the center pocket of GAPDH. Our study sheds new light on factors for designing a more potent and specific inhibitor of GAPDH for future therapeutic applications.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Taninos Hidrolisáveis/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Glucose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/antagonistas & inibidores , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Compostos Organometálicos , Reação em Cadeia da Polimerase em Tempo Real
2.
Bioorg Chem ; 101: 103991, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32559581

RESUMO

CREB-binding protein (CBP) is a large multi-domain protein containing a HAT domain catalyzing transacetylation and a bromodomain responsible for acetylated lysine recognition. CBPs could act as transcription co-activators to regulate gene expression and have been shown to play a significant role in the development and progression of many cancers. Herein, through in silico screening two hit compounds with tetrahydroquinolin methyl carbamate scaffold were discovered, among which DC-CPin7 showed an in vitro inhibitory activity with the TR-FRET IC50 value of 2.5 ± 0.3 µM. We obtained a high-resolution co-crystal structure of the CBP bromodomain in complex with DC-CPin7 to guide following structure-based rational drug design, which yielded over ten DC-CPin7 derivatives with much higher potency, among which DC-CPin711 showed approximately 40-fold potency compared with hit compound DC-CPin7 with an in vitro TR-FRET IC50 value of 63.3 ± 4.0 nM. Notably, DC-CPin711 showed over 150-fold selectivity against BRD4 bromodomains. Moreover, DC-CPin711 showed micromolar level of anti-leukemia proliferation through G1 phase cell cycle arrest and cell apoptosis. In summary, through a combination of computational and crystal-based structure optimization, DC-CPin711 showed potent in vitro inhibitory activities to CBP bromodomain with a decent selectivity towards BRD4 bromodomains and good cellular activity to leukemia cells, which could further be applied to related biological and translational studies as well as serve as a lead compound for future development of potent and selective CBP bromodomain inhibitors.


Assuntos
Proteína de Ligação a CREB/antagonistas & inibidores , Domínios Proteicos/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia , Proteína de Ligação a CREB/química , Cristalografia por Raios X , Desenho de Fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Leucemia/patologia , Quinolinas/síntese química , Relação Estrutura-Atividade
3.
Am J Nephrol ; 51(1): 1-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31694015

RESUMO

BACKGROUND: Inflammation plays an important role in polycystic kidney disease (PKD). Cordyceps sinensis, a prized -Chinese medicinal herb, exerts anti-tumor, anti-inflammatory and anti-metastatic effects and benefits patients with kidney diseases. The aim of this study was to test the efficacy of FTY720, an immunosuppressant derived from C. sinensis, in a rat cystic kidney disease model, and explore its underlining mechanism. METHODS: Male wild type and Cy/+ Han:SPRD rats were treated with FTY720 at 3 and 10 mg/kg/day for 5 weeks and 12 weeks by gavage. Blood and kidney were collected for functional, morphological, RNA, and protein analysis. RESULTS: Inflammation is activated in Cy/+ Han:SPRD rats. Inflammatory cytokines including interleukin 6 and tumor necrosis factor alpha were upregulated and inflammation-related pathways were activated, such as nuclear factor κB and signal transducer and activator of transcription 3 (STAT3) pathways. Furthermore, the bioactive sphingolipid mediator sphingosine-1-phosphate (S1P), a regulator of inflammation, was accumulated in the Cy/+ Han:SPRD rats. FTY720 significantly reduced cyst growth and delayed disease progression by reducing the accumulation of S1P, thereby inhibiting inflammatory responses. CONCLUSION: FTY720 treatment reduced the expression of inflammatory cytokines and attenuated the activation of NK-κB and STAT3 pathways in Cy/+ Han:SPRD rats. It suggests that FTY720 may serve as a therapeutic agent for clinical autosomal dominant PKD treatment.


Assuntos
Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/uso terapêutico , Doenças Renais Policísticas/tratamento farmacológico , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Animais , Masculino , Ratos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA