Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chin J Integr Med ; 27(9): 680-687, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32572774

RESUMO

OBJECTIVE: To examine the role of carvacrol in modulating PI3K/AKT signaling involved in human breast cancer pathogenesis using in vitro experimental model MCF-7 cells. METHODS: MTT and lactate dehydrogenase assays were performed with cells treated with different doses of carvacrol (0-250 p mol/L) at different time points (24 and 48 h). The nuclear morphology was assessed in MCF-7 cells with propidium iodide (PI) and acridine orange/ethidium bromide (AO/EB) staining and analyzed by fluorescence microscopy. Events like cell cycle arrest, apoptosis was observed by flow cytometric analysis and expressions of p-Rb, cyclin D1, cyclin-dependent kinase 4 (CDK4), CDK6, Bax, Bcl-2, PI3K/p-AKT was analyzed by immunoblot. RESULTS: Carvacrol significantly reduced cell viability with the half maximal inhibitory concentration value of 200 µmol/L at 24 and 48 h (P<0.05). importantly, there was a significant increase in the accumulation of the G0/G1 phase upon treatment with carvacrol in MCF-7 cells (P<0.05 or P<0.01). A remarkable decrease in protein expressions of p-Rb, cyclin D1, CDK4 and CDK6 denotes cell cycle arrest (P<0.05 or P<0.01). In addition, carvacrol treatment significantly inhibited PI3K/p-AKT protein expressions leading to induction of apoptosis mediated by decreased Bcl2 and increased Bax protein expressions. Further, Annexin V/PI staining by FACS analysis, dual staining by AO/EB and PI staining studies suggests induction of apoptosis by carvacrol through PI3K/Akt signaling pathway in MCF-7 cells. CONCLUSION: Carvacrol significantly inhibited the breast cancer MCF-7 cell proliferation and induced apoptosis via suppressing PI3/AKT signaling pathway.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Apoptose , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Cimenos , Feminino , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
J Biochem Mol Toxicol ; 33(10): e22382, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31468657

RESUMO

Vanillic acid (VA) is found in high concentrations in various plants and used as traditional medicine for various diseases. The aim of the existing study is to illustrate the protective effects of VA against benzo(a)pyrene (B(a)P)-induced lung cancer in Swiss albino mice. B(a)P (50 mg/kg b.wt.) was given orally to induce lung cancer in mice. The body weight, tumor incidence, carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and enzymatic/nonenzymatic antioxidants (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione) were estimated. Further histochemical investigation through hematoxylin and eosin staining was also carried out. B(a)P administered groups showed increased levels of serum pathological markers CEA, NSE along with reduced final body weight as well as decreased tissue enzymatic and nonenzymatic antioxidants activities, whereas VA treatment (200mg/kg/b.wt) along with B(a)P showed significantly reverted the above changes, which proves as prominent anticancer effects in experimentally induced lung cancer. Overall, these results suggest that VA has an efficient preventive action against B(a)P-induced lung cancer, and this is attributed to its free-radical scavenging antioxidant activities.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/prevenção & controle , Ácido Vanílico/farmacologia , Animais , Antioxidantes/metabolismo , Antígeno Carcinoembrionário/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo
3.
Mol Cell Biochem ; 377(1-2): 163-76, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23397134

RESUMO

Hepatocellular carcinoma (HCC) incidence rates are increasing in many parts of the world. HCC's limited treatment remedies and the poor prognosis emphasize the importance in developing an effective chemoprevention for this disease. Here, we investigated the molecular mechanisms involved in the chemoprevention of silymarin in N-nitrosodiethylamine (NDEA)-induced rat model of HCC. Liver of the rats treated with NDEA showed higher proliferation index and glycoconjugates. NDEA treatment also increased the level of anti-apoptotic proteins with simultaneous decrease in the level of pro-apoptotic proteins along with increased accumulation of Cytochrome c in mitochondria. The carcinogenic insult also increased microsomal phase I metabolizing enzymes with a simultaneous decrease in the Phase II detoxifying enzyme glutathione-S-transferase (GST). Whereas dietary silymarin administration along with NDEA treatment significantly decreased the proliferation and down regulated the expression of anti-apoptotic proteins with simultaneously increased expression of pro-apoptotic proteins along with the release of Cytochrome c to cytosol there by activating the intrinsic apoptotic pathway. Silymarin administration also decreased the level of glycoproteins and activated the phase II detoxifying enzyme GST. These results demonstrate that suppression of HCC by silymarin in vivo involves inhibition of proliferation, activation of apoptosis, and efficient detoxification.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Silimarina/administração & dosagem , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Células Cultivadas , Ciclina D1/metabolismo , Suplementos Nutricionais , Ensaios de Seleção de Medicamentos Antitumorais , Glicoproteínas/metabolismo , Hexosaminas/metabolismo , Hexoses/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Desintoxicação Metabólica Fase II , Proteínas Associadas aos Microtúbulos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Ratos Wistar , Ácidos Siálicos/metabolismo , Survivina , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA