Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Handb Clin Neurol ; 193: 53-66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803823

RESUMO

Parkinson disease (PD) is the second most common neurodegenerative disease in the world. Despite its enormous human and societal cost, there is no disease-modifying therapy for PD. This unmet medical need reflects our limited understanding of PD pathogenesis. One of the most important clues comes from the recognition that PD motor symptoms arises from the dysfunction and degeneration of a very select group of neurons in the brain. These neurons have a distinctive set of anatomic and physiologic traits that reflect their role in brain function. These traits elevate mitochondrial stress, potentially making them particularly vulnerable to age, as well as to genetic mutations and environmental toxins linked to PD incidence. In this chapter, the literature supporting this model is outlined, along with gaps in our knowledge base. The translational implications of this hypothesis are then discussed, with a focus on why disease-modification trials have failed to date and what this means for the development of new strategies for altering disease course.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/patologia , Mitocôndrias/genética , Neurônios/patologia , Encéfalo/patologia
2.
Sci Adv ; 8(39): eabp8701, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179023

RESUMO

How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca2+) entry through Cav1 channels triggered Ca2+ release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca2+-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease.


Assuntos
Cálcio , Neurônios Dopaminérgicos , Trifosfato de Adenosina/metabolismo , Ácido Aspártico , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Malatos/metabolismo , Malatos/farmacologia , Mitocôndrias/metabolismo , Oxidantes , Substância Negra/metabolismo
3.
Neuron ; 101(3): 444-458.e6, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30658860

RESUMO

The motor symptoms of Parkinson's disease (PD) are thought to stem from an imbalance in the activity of striatal direct- and indirect-pathway spiny projection neurons (SPNs). Disease-induced alterations in the activity of networks controlling SPNs could contribute to this imbalance. One of these networks is anchored by the parafascicular nucleus (PFn) of the thalamus. To determine the role of the PFn in striatal PD pathophysiology, optogenetic, chemogenetic, and electrophysiological tools were used in ex vivo slices from transgenic mice with region-specific Cre recombinase expression. These studies revealed that in parkinsonian mice, the functional connectivity of PFn neurons with indirect pathway SPNs (iSPNs) was selectively enhanced by cholinergic interneurons acting through presynaptic nicotinic acetylcholine receptors (nAChRs) on PFn terminals. Attenuating this network adaptation by chemogenetic or genetic strategies alleviated motor-learning deficits in parkinsonian mice, pointing to a potential new therapeutic strategy for PD patients.


Assuntos
Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiopatologia , Potenciais Pós-Sinápticos Excitadores , Interneurônios/fisiologia , Doença de Parkinson/fisiopatologia , Tálamo/fisiopatologia , Animais , Neurônios Colinérgicos/metabolismo , Corpo Estriado/citologia , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Receptores Nicotínicos/metabolismo , Tálamo/citologia
4.
Neuron ; 85(2): 364-76, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25578364

RESUMO

The two principal movement-suppressing pathways of the basal ganglia, the so-called hyperdirect and indirect pathways, interact within the subthalamic nucleus (STN). An appropriate level and pattern of hyperdirect pathway cortical excitation and indirect pathway external globus pallidus (GPe) inhibition of the STN are critical for normal movement and are greatly perturbed in Parkinson's disease. Here we demonstrate that motor cortical inputs to the STN heterosynaptically regulate, through activation of postsynaptic NMDA receptors, the number of functional GABAA receptor-mediated GPe-STN inputs. Therefore, a homeostatic mechanism, intrinsic to the STN, balances cortical excitation by adjusting the strength of GPe inhibition. However, following the loss of dopamine, excessive cortical activation of STN NMDA receptors triggers GPe-STN inputs to strengthen abnormally, contributing to the emergence of pathological, correlated activity.


Assuntos
Dopamina/metabolismo , Globo Pálido/metabolismo , Ácido Glutâmico/metabolismo , Córtex Motor/metabolismo , Vias Neurais/metabolismo , Transtornos Parkinsonianos/metabolismo , Núcleo Subtalâmico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Globo Pálido/fisiologia , Potenciação de Longa Duração , Camundongos , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Optogenética , Transtornos Parkinsonianos/fisiopatologia , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Subtalâmico/fisiologia , Transmissão Sináptica/fisiologia
5.
Nat Commun ; 3: 1146, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23093183

RESUMO

L-type calcium channels expressed in the brain are heterogeneous. The predominant class of L-type calcium channels has a Ca(V)1.2 pore-forming subunit. L-type calcium channels with a Ca(V)1.3 pore-forming subunit are much less abundant, but have been implicated in the generation of mitochondrial oxidant stress underlying pathogenesis in Parkinson's disease. Thus, selectively antagonizing Ca(V)1.3 L-type calcium channels could provide a means of diminishing cell loss in Parkinson's disease without producing side effects accompanying general antagonism of L-type calcium channels. However, there are no known selective antagonists of Ca(V)1.3 L-type calcium channel. Here we report high-throughput screening of commercial and 'in-house' chemical libraries and modification of promising hits. Pyrimidine-2,4,6-triones were identified as a potential scaffold; structure-activity relationship-based modification of this scaffold led to 1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione (8), a potent and highly selective Ca(V)1.3 L-type calcium channel antagonist. The biological relevance was confirmed by whole-cell patch-clamp electrophysiology. These studies describe the first highly selective Ca(V)1.3 L-type calcium channel antagonist and point to a novel therapeutic strategy for Parkinson's disease.


Assuntos
Barbitúricos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Animais , Barbitúricos/uso terapêutico , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/uso terapêutico , Cristalografia , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Técnicas de Patch-Clamp , Coelhos , Ratos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
6.
J Neurosci ; 31(45): 16102-6, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072662

RESUMO

Although the existence of prominent connections between the intralaminar thalamic nuclei and the basal ganglia has long been established, the limited knowledge of the functional relevance of this network has considerably hampered progress in our understanding of the neural mechanisms by which the thalamostriatal system integrates and regulates the basal ganglia circuitry. In this brief commentary, we will address this gap of knowledge through a discussion of the key points of a symposium entitled "Thalamic Contributions to Basal Ganglia-Related Behavioral Switching and Reinforcement" that will be presented at the 2011 Society for Neuroscience meeting. Recent anatomical and physiological data that support the role of the thalamostriatal system in action selection, attentional shifting, and reinforcement will be discussed. We will also address the possibility that degeneration of the thalamostriatal system could underlie some of the deficits in redirection of attention in response to salient stimuli seen in Parkinson's disease.


Assuntos
Atenção/fisiologia , Gânglios da Base/fisiologia , Reforço Psicológico , Tálamo/fisiologia , Animais , Gânglios da Base/citologia , Humanos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Tálamo/citologia
7.
J Neurophysiol ; 106(5): 2216-31, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795621

RESUMO

Motor cortex is a key brain center involved in motor control in rodents and other mammals, but specific intracortical mechanisms at the microcircuit level are largely unknown. Neuronal expression of hyperpolarization-activated current (I(h)) is cell class specific throughout the nervous system, but in neocortex, where pyramidal neurons are classified in various ways, a systematic pattern of expression has not been identified. We tested whether I(h) is differentially expressed among projection classes of pyramidal neurons in mouse motor cortex. I(h) expression was high in corticospinal neurons and low in corticostriatal and corticocortical neurons, a pattern mirrored by mRNA levels for HCN1 and Trip8b subunits. Optical mapping experiments showed that I(h) attenuated glutamatergic responses evoked across the apical and basal dendritic arbors of corticospinal but not corticostriatal neurons. Due to I(h), corticospinal neurons resonated, with a broad peak at ∼4 Hz, and were selectively modulated by α-adrenergic stimulation. I(h) reduced the summation of short trains of artificial excitatory postsynaptic potentials (EPSPs) injected at the soma, and similar effects were observed for short trains of actual EPSPs evoked from layer 2/3 neurons. I(h) narrowed the coincidence detection window for EPSPs arriving from separate layer 2/3 inputs, indicating that the dampening effect of I(h) extended to spatially disperse inputs. To test the role of corticospinal I(h) in transforming EPSPs into action potentials, we transfected layer 2/3 pyramidal neurons with channelrhodopsin-2 and used rapid photostimulation across multiple sites to synaptically drive spiking activity in postsynaptic neurons. Blocking I(h) increased layer 2/3-driven spiking in corticospinal but not corticostriatal neurons. Our results imply that I(h)-dependent synaptic integration in corticospinal neurons constitutes an intracortical control mechanism, regulating the efficacy with which local activity in motor cortex is transferred to downstream circuits in the spinal cord. We speculate that modulation of I(h) in corticospinal neurons could provide a microcircuit-level mechanism involved in translating action planning into action execution.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Vias Eferentes/fisiologia , Proteínas de Membrana/fisiologia , Córtex Motor/fisiologia , Canais de Potássio/fisiologia , Tratos Piramidais/fisiologia , Potenciais de Ação/fisiologia , Agonistas Adrenérgicos/farmacologia , Animais , Corpo Caloso/citologia , Corpo Caloso/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Dendritos/fisiologia , Vias Eferentes/citologia , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Ácido Glutâmico/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Técnicas de Cultura de Órgãos , Canais de Potássio/genética , Células Piramidais/fisiologia , Tratos Piramidais/citologia , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/fisiologia , Sinapses/fisiologia
8.
J Neurosci ; 30(47): 16025-40, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21106841

RESUMO

The activity patterns of subthalamic nucleus (STN) neurons are intimately linked to motor function and dysfunction and arise through the complex interaction of intrinsic properties and inhibitory and excitatory synaptic inputs. In many neurons, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play key roles in intrinsic excitability and synaptic integration both under normal conditions and in disease states. However, in STN neurons, which strongly express HCN channels, their roles remain relatively obscure. To address this deficit, complementary molecular and cellular electrophysiological, imaging, and computational approaches were applied to the rat STN. Molecular profiling demonstrated that individual STN neurons express mRNA encoding several HCN subunits, with HCN2 and 3 being the most abundant. Light and electron microscopic analysis showed that HCN2 subunits are strongly expressed and distributed throughout the somatodendritic plasma membrane. Voltage-, current-, and dynamic-clamp analysis, two-photon Ca(2+) imaging, and computational modeling revealed that HCN channels are activated by GABA(A) receptor-mediated inputs and thus limit synaptic hyperpolarization and deinactivation of low-voltage-activated Ca(2+) channels. Although HCN channels also limited the temporal summation of EPSPs, generated through two-photon uncaging of glutamate, this action was largely shunted by GABAergic inhibition that was necessary for HCN channel activation. Together the data demonstrate that HCN channels in STN neurons selectively counteract GABA(A) receptor-mediated inhibition arising from the globus pallidus and thus promote single-spike activity rather than rebound burst firing.


Assuntos
Dendritos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Canais Iônicos/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Núcleo Subtalâmico/fisiologia , Transmissão Sináptica/fisiologia , Animais , Dendritos/efeitos dos fármacos , Dendritos/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Canais de Potássio , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos
9.
Neuron ; 67(2): 294-307, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20670836

RESUMO

Salient stimuli redirect attention and suppress ongoing motor activity. This attentional shift is thought to rely upon thalamic signals to the striatum to shift cortically driven action selection, but the network mechanisms underlying this interaction are unclear. Using a brain slice preparation that preserved cortico- and thalamostriatal connectivity, it was found that activation of thalamostriatal axons in a way that mimicked the response to salient stimuli induced a burst of spikes in striatal cholinergic interneurons that was followed by a pause lasting more than half a second. This patterned interneuron activity triggered a transient, presynaptic suppression of cortical input to both major classes of principal medium spiny neuron (MSN) that gave way to a prolonged enhancement of postsynaptic responsiveness in striatopallidal MSNs controlling motor suppression. This differential regulation of the corticostriatal circuitry provides a neural substrate for attentional shifts and cessation of ongoing motor activity with the appearance of salient environmental stimuli.


Assuntos
Acetilcolina/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Tálamo/fisiologia , Potenciais de Ação/fisiologia , Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Colina O-Acetiltransferase/metabolismo , Cocaína/farmacologia , Corpo Estriado/citologia , Antagonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Mecamilamina/farmacologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Vias Neurais/fisiologia , Antagonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Sulpirida/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo
10.
Biol Psychiatry ; 65(6): 518-26, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18947822

RESUMO

BACKGROUND: Chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment of Parkinson's disease (PD) leads to debilitating involuntary movements, termed L-DOPA-induced dyskinesia. Striatofugal medium spiny neurons (MSN) lose their dendritic spines and cortico-striatal glutamatergic synapses in PD and in experimental models of DA depletion. This loss of connectivity is triggered by a dysregulation of intraspine Cav1.3 L-type Ca2+ channels. Here we address the possible implication of DA denervation-induced spine pruning in the development of L-DOPA-induced dyskinesia. METHODS: The L-type Ca2+ antagonist, isradipine was subcutaneously delivered to rats at the doses of .05, .1, or .2 mg/kg/day, for 4 weeks, starting the day after a unilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesion. Fourteen days later, L-DOPA treatment was initiated. RESULTS: Isradipine-treated animals displayed a dose-dependent reduction in L-DOPA-induced rotational behavior and abnormal involuntary movements. Dendritic spine counting at electron microscopy level showed that isradipine (.2 mg/kg/day) prevented the 6-OHDA-induced spine loss and normalized preproenkephalin-A messenger RNA expression. Involuntary movements were not reduced when isradipine treatment was started concomitantly with L-DOPA. CONCLUSIONS: These results indicate that isradipine, at a therapeutically relevant dose, might represent a treatment option for preventing L-DOPA-induced dyskinesia in PD.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Discinesia Induzida por Medicamentos/prevenção & controle , Isradipino/uso terapêutico , Levodopa/efeitos adversos , Simpatolíticos/administração & dosagem , Animais , Bloqueadores dos Canais de Cálcio/administração & dosagem , Cérebro/metabolismo , Cérebro/ultraestrutura , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/metabolismo , Encefalinas/metabolismo , Isradipino/administração & dosagem , Isradipino/farmacologia , Levodopa/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Nimodipina/farmacologia , Oxidopamina , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
11.
Science ; 321(5890): 848-51, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18687967

RESUMO

At synapses between cortical pyramidal neurons and principal striatal medium spiny neurons (MSNs), postsynaptic D1 and D2 dopamine (DA) receptors are postulated to be necessary for the induction of long-term potentiation and depression, respectively-forms of plasticity thought to underlie associative learning. Because these receptors are restricted to two distinct MSN populations, this postulate demands that synaptic plasticity be unidirectional in each cell type. Using brain slices from DA receptor transgenic mice, we show that this is not the case. Rather, DA plays complementary roles in these two types of MSN to ensure that synaptic plasticity is bidirectional and Hebbian. In models of Parkinson's disease, this system is thrown out of balance, leading to unidirectional changes in plasticity that could underlie network pathology and symptoms.


Assuntos
Corpo Estriado/fisiologia , Dopamina/fisiologia , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Sinapses/fisiologia , Animais , Moduladores de Receptores de Canabinoides/metabolismo , Corpo Estriado/citologia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais
12.
J Neurosci ; 28(25): 6483-92, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-18562619

RESUMO

The two principal excitatory glutamatergic inputs to striatal medium spiny neurons (MSNs) arise from neurons in the cerebral cortex and thalamus. Although there have been many electrophysiological studies of MSN glutamatergic synapses, little is known about how corticostriatal and thalamostriatal synapses differ. Using mouse brain slices that allowed each type of synapse to be selectively activated, electrophysiological approaches were used to characterize their properties in identified striatopallidal and striatonigral MSNs. At corticostriatal synapses, a single afferent volley increased the glutamate released by a subsequent volley, leading to enhanced postsynaptic depolarization with repetitive stimulation. This was true for both striatonigral and striatopallidal MSNs. In contrast, at thalamostriatal synapses, a single afferent volley decreased glutamate released by a subsequent volley, leading to a depressed postsynaptic depolarization with repetitive stimulation. Again, this response pattern was the same in striatonigral and striatopallidal MSNs. These differences in release probability and short-term synaptic plasticity suggest that corticostriatal and thalamostriatal projection systems code information in temporally distinct ways, constraining how they regulate striatal circuitry.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Técnicas In Vitro , Camundongos , Transmissão Sináptica/fisiologia
13.
J Neurosci ; 25(38): 8776-87, 2005 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16177047

RESUMO

Dendritically placed, voltage-sensitive ion channels are key regulators of neuronal synaptic integration. In several cell types, hyperpolarization/cyclic nucleotide gated (HCN) cation channels figure prominently in dendritic mechanisms controlling the temporal summation of excitatory synaptic events. In prefrontal cortex, the sustained activity of pyramidal neurons in working memory tasks is thought to depend on the temporal summation of dendritic excitatory inputs. Yet we know little about how this is accomplished in these neurons and whether HCN channels play a role. To gain a better understanding of this process, layer V-VI pyramidal neurons in slices of mouse prelimbic and infralimbic cortex were studied. Somatic voltage-clamp experiments revealed the presence of rapidly activating and deactivating cationic currents attributable to HCN1/HCN2 channels. These channels were open at the resting membrane potential and had an apparent half-activation voltage near -90 mV. In the same voltage range, K+ currents attributable to Kir2.2/2.3 and K+-selective leak (Kleak) channels were prominent. Computer simulations grounded in the biophysical measurements suggested a dynamic interaction among Kir2, Kleak, and HCN channel currents in shaping membrane potential and the temporal integration of synaptic potentials. This inference was corroborated by experiment. Blockade of Kir2/Kleak channels caused neurons to depolarize, leading to the deactivation of HCN channels, the initiation of regular spiking (4-5 Hz), and enhanced temporal summation of EPSPs. These studies show that HCN channels are key regulators of synaptic integration in prefrontal pyramidal neurons but that their functional contribution is dependent on a partnership with Kir2 and Kleak channels.


Assuntos
Dendritos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Lobo Frontal/fisiologia , Canais Iônicos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Células Piramidais/fisiologia , Animais , Células Cultivadas , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Feminino , Lobo Frontal/citologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA