Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Prev Cardiol ; 25(17): 1875-1883, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30196723

RESUMO

AIMS: Previous studies have shown that ultraviolet light can lead to the release of nitric oxide from the skin and decrease blood pressure. In contrast to visible light the local application of ultraviolet light bears a cancerogenic risk. Here, we investigated whether whole body exposure to visible blue light can also decrease blood pressure and increase endothelial function in healthy subjects. METHODS: In a randomised crossover study, 14 healthy male subjects were exposed on 2 days to monochromatic blue light or blue light with a filter foil (control light) over 30 minutes. We measured blood pressure (primary endpoint), heart rate, forearm vascular resistance, forearm blood flow, endothelial function (flow-mediated dilation), pulse wave velocity and plasma nitric oxide species, nitrite and nitroso compounds (secondary endpoints) during and up to 2 hours after exposure. RESULTS: Blue light exposure significantly decreased systolic blood pressure and increased heart rate as compared to control. In parallel, blue light significantly increased forearm blood flow, flow-mediated dilation, circulating nitric oxide species and nitroso compounds while it decreased forearm vascular resistance and pulse wave velocity. CONCLUSION: Whole body irradiation with visible blue light at real world doses improves blood pressure, endothelial function and arterial stiffness by nitric oxide released from photolabile intracutanous nitric oxide metabolites into circulating blood.


Assuntos
Pressão Sanguínea/efeitos da radiação , Endotélio Vascular/efeitos da radiação , Antebraço/irrigação sanguínea , Fototerapia/métodos , Rigidez Vascular/efeitos da radiação , Adulto , Biomarcadores/sangue , Estudos Cross-Over , Endotélio Vascular/metabolismo , Voluntários Saudáveis , Frequência Cardíaca/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Fatores de Tempo , Vasodilatação/efeitos da radiação , Irradiação Corporal Total
2.
Exp Dermatol ; 23(4): 240-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24533842

RESUMO

Transforming growth factor-ß1 (TGF-ß1) is the major promoter of phenotypic shift between fibroblasts and myofibroblasts accompanied by the expression and incorporation of α-smooth muscle actin (α-SMA). This differentiation is crucial during normal wound healing and wound closure; however, myofibroblasts are considered as the main effecter cell type in fibrosis, for example in scleroderma and hypertrophic scarring. As blue light has exerted antiprolific and toxic effects in several cell types, we investigated whether blue light irradiations with a light-emitting diode array (420 nm) were able to affect proliferation and differentiation of human dermal fibroblasts (HDF). We found that repeated irradiation with non-toxic doses significantly inhibits TGF-ß1-induced differentiation of HDF into myofibroblasts shown by α-SMA immunocytochemistry and Western blotting. Additionally, used doses reduced proliferation and myofibroblast contractibility measured by resazurin and collagen gel contraction assays. It could be demonstrated that blue light mediates cell toxicity by oxidative stress due to the generation of singlet oxygen. We postulate that irradiations at non-toxic doses induce low-level oxidative stress and energy-consuming cellular responses, which both may effect proliferation stop and interfere with myofibroblast differentiation. Thus, targeting differentiation, proliferation and activity of myofibroblasts by blue light may represent a useful strategy to prevent or reduce pathological fibrotic conditions.


Assuntos
Diferenciação Celular/efeitos da radiação , Miofibroblastos/efeitos da radiação , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Luz , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Fototerapia , Espécies Reativas de Oxigênio/metabolismo
3.
Free Radic Biol Med ; 65: 1363-1377, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121056

RESUMO

Human skin contains photolabile nitric oxide (NO) derivates such as nitrite and S-nitrosothiols, which upon UVA radiation decompose under high-output NO formation and exert NO-specific biological responses such as increased local blood flow or reduced blood pressure. To avoid the injurious effects of UVA radiation, we here investigated the mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic NO generation from photolabile nitric oxide derivates in human skin in vitro and in vivo. As quantified by chemiluminescence detection (CLD), at physiological pH blue light at 420 or 453 nm induced a significant NO formation from S-nitrosoalbumin and also from aqueous nitrite solutions by a to-date not entirely identified Cu(1+)-dependent mechanism. As detected by electron paramagnetic resonance spectrometry in vitro with human skin specimens, blue light irradiation significantly increased the intradermal levels of free NO. As detected by CLD in vivo in healthy volunteers, irradiation of human skin with blue light induced a significant emanation of NO from the irradiated skin area as well as a significant translocation of NO from the skin surface into the underlying tissue. In parallel, blue light irradiation caused a rapid and significant rise in local cutaneous blood flow as detected noninvasively by using micro-light-guide spectrophotometry. Irradiation of human skin with moderate doses of blue light caused a significant increase in enzyme-independent cutaneous NO formation as well as NO-dependent local biological responses, i.e., increased blood flow. The effects were attributed to blue-light-induced release of NO from cutaneous photolabile NO derivates. Thus, in contrast to UVA, blue-light-induced NO generation might be therapeutically used in the treatment of systemic and local hemodynamic disorders that are based on impaired physiological NO production or bioavailability.


Assuntos
Óxido Nítrico/biossíntese , Nitritos/química , S-Nitrosotióis/química , Pele/metabolismo , Pele/efeitos da radiação , Adulto , Animais , Linhagem Celular Tumoral , Cobre/química , GMP Cíclico/biossíntese , GMP Cíclico/química , Feminino , Humanos , Luz , Luminescência , Masculino , Óxido Nítrico/sangue , Óxido Nítrico/química , Compostos Nitrosos/química , Fototerapia/métodos , Ratos , Soroalbumina Bovina/química
4.
Free Radic Biol Med ; 49(6): 1129-37, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20619338

RESUMO

Psoralens are regularly used in therapy in combination with ultraviolet A light irradiation (PUVA) to treat skin diseases such as psoriasis, vitiligo, and mycosis fungoides. PUVA therapy is also used within the scope of extracorporeal photopheresis to treat a variety of diseases that have a suspected involvement of pathogenic T cells, including rejection of organ transplants, graft-vs-host disease, cutaneous T cell lymphoma, and autoimmune disorders. Because psoralens are the only photosensitizers used in PUVA therapies and are considered to be responsible for a number of side effects, the identification of alternative drugs is of practical interest. Here we investigated the impact of activated Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a hydrophilic vitamin E analog lacking the phytyl tail, as an alternative photoactivatable agent with T cell cytotoxic properties. Despite the well-known antioxidative capacity of Trolox, we found that at low UVA doses and in the presence of supraphysiological concentration of nitrite, a natural constituent of human skin, this compound selectively enhances radical-mediated cytotoxicity toward T cells but not toward human skin fibroblasts, keratinocytes, or endothelial cells. The cytotoxic mechanism comprises a reaction of Trolox with photo-decomposition products of nitrite, which leads to increased Trolox phenoxyl radical formation, increased intracellular oxidative stress, and a consecutive induction of apoptosis and necrosis in fast proliferating T cells. Thus, the identified UVA/nitrite-induced phenoxyl radical formation provides an opportunity for a new cytotoxic photodynamic therapy.


Assuntos
Cromanos/farmacologia , Radiossensibilizantes/farmacologia , Pele/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Humanos , Células Jurkat , Nitritos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Terapia PUVA , Fenóis/metabolismo , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Linfócitos T/metabolismo , Linfócitos T/patologia , Linfócitos T/efeitos da radiação , Raios Ultravioleta/efeitos adversos
6.
Free Radic Biol Med ; 44(12): 2002-12, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18355458

RESUMO

Oxidative stress is one of the main causes of vascular disease. This study aims to investigate the antioxidant activity exerted by zinc in primary rat endothelial cells (EC). Using a 24-h treatment with hydrogen peroxide as a model for oxidative stress, we found that zinc supplementation protects from peroxide-induced cell death via increasing the transcription of the catalytic subunit (heavy chain) of glutamate-cysteine ligase (GCLC) and the concentrations of glutathione (GSH). Conversely, zinc depletion significantly decreased the expression of GCLC and the cellular GSH levels, resulting in an increased susceptibility of EC to oxidative stress. Using confocal microscopy and the RNA silencing technique, we found that zinc upregulates the expression of GCLC by activating the transcription factor Nrf2. Surprisingly, the intracellular zinc sensor, metal-responsive transcription factor-1, is not involved in the zinc-induced expression of GCLC. The present study shows that zinc controls the redox state of EC by regulating the de novo synthesis of GSH. This molecular mechanism may contribute to the elaboration of new nutritional and/or pharmaceutical approaches for protecting the endothelium against oxidative stress.


Assuntos
Células Endoteliais/metabolismo , Glutamato-Cisteína Ligase/biossíntese , Glutationa/biossíntese , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Zinco/fisiologia , Animais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Endotélio Vascular/metabolismo , Estresse Oxidativo , Ratos , Fatores de Transcrição/metabolismo , Sulfato de Zinco/farmacologia , Fator MTF-1 de Transcrição
7.
Proc Natl Acad Sci U S A ; 100(24): 13952-7, 2003 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-14617770

RESUMO

Zn2+ is critical for the functional and structural integrity of cells and contributes to a number of important processes including gene expression. It has been shown that NO exogenously applied via NO donors resulting in nitrosative stress leads to cytoplasmic Zn2+ release from the zinc storing protein metallothionein (MT) and probably other proteins that complex Zn2+ via cysteine thiols. We show here that, in cytokine-activated murine aortic endothelial cells, NO derived from the inducible NO synthase (iNOS) induces a transient nuclear release of Zn2+. This nuclear Zn2+ release depends on the presence of MT as shown by the lack of this effect in activated endothelial cells from MT-deficient mice and temporally correlates with nuclear MT translocation. Data also show that NO is an essential but not sufficient signal for MT-mediated Zn2+ trafficking from the cytoplasm into the nucleus. In addition, we found that, endogenously via iNOS, synthesized NO increases the constitutive mRNA expression of both MT-1 and MT-2 genes and that nitrosative stress exogenously applied via an NO donor increases constitutive MT mRNA expression via intracellular Zn2+ release. In conclusion, we here provide evidence for a signaling mechanism based on iNOS-derived NO through the regulation of intracellular Zn2+ trafficking and homeostasis.


Assuntos
Metalotioneína/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Zinco/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sequência de Bases , Citocinas/farmacologia , DNA Complementar/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Expressão Gênica/efeitos dos fármacos , Homeostase , Técnicas In Vitro , Mediadores da Inflamação/farmacologia , Metalotioneína/deficiência , Metalotioneína/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/deficiência , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA