Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS One ; 12(3): e0173113, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249026

RESUMO

Cancer cachexia (CC) is a multifactorial disease characterized by decreased food intake and loss of body weight due to reduced musculature with or without loss of fat mass. Patients with gastric cancer have a high incidence of cachexia. We previously established a novel CC rat model induced by human gastric cancer-derived 85As2 cells in order to examine the pathophysiology of CC and identify potential therapeutics. In patients with CC, anorexia is often observed, despite elevation of ghrelin, suggesting that ghrelin resistance may develop in these patients. In this study, we aimed to clarify the occurrence of ghrelin resistance in CC rats accompanied by anorexia and we investigated whether rikkunshito (RKT), a traditional Japanese Kampo medicine that potentiates ghrelin signaling, ameliorated CC-related anorexia through alleviation of ghrelin resistance. 85As2-tumor-bearing rats developed severe CC symptoms, including anorexia and loss of body weight/musculature, with the latter symptoms being greater in cachectic rats than in non-tumor-bearing or pair-fed rats. CC rats showed poor responses to intraperitoneal injection of ghrelin. In CC rats, plasma ghrelin levels were elevated and hypothalamic anorexigenic peptide mRNA levels were decreased, whereas hypothalamic growth hormone secretagogue receptor (GHS-R) mRNA was not affected. In vitro, RKT directly enhanced ghrelin-induced GHS-R activation. RKT administrated orally for 7 days partly alleviated the poor response to ghrelin and ameliorated anorexia without affecting the elevation of plasma ghrelin levels in CC rats. The expression of hypothalamic orexigenic neuropeptide Y mRNA but not hypothalamic GHS-R mRNA was increased by RKT. Thus, the 85As2 cell-induced CC rat model developed ghrelin resistance, possibly contributing to anorexia and body weight loss. The mechanism through which RKT ameliorated anorexia in the CC rat model may involve alleviation of ghrelin resistance by enhancement of ghrelin signaling. These findings suggest that RKT may be a promising agent for the treatment of CC.


Assuntos
Caquexia/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Grelina/sangue , Medicina Kampo/métodos , Neoplasias Gástricas/complicações , Animais , Caquexia/metabolismo , Linhagem Celular Tumoral , Resistência a Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Grelina/uso terapêutico , Humanos , Masculino , Cuidados Paliativos , Ratos , Ratos Endogâmicos F344
2.
Am J Physiol Endocrinol Metab ; 306(4): E373-87, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24347053

RESUMO

Cancer cachexia (CC), a syndrome characterized by anorexia and body weight loss due to low fat-free mass levels, including reduced musculature, markedly worsens patient quality of life. Although stomach cancer patients have the highest incidence of cachexia, few experimental models for the study of stomach CC have been established. Herein, we developed stomach CC animal models using nude rats subcutaneously implanted with two novel cell lines, i.e., MKN45c185, established from the human stomach cancer cell line MKN-45, and 85As2, derived from peritoneal dissemination of orthotopically implanted MKN45c185 cells in mice. Both CC models showed marked weight loss, anorexia, reduced musculature and muscle strength, increased inflammatory markers, and low plasma albumin levels; however, CC developed earlier and was more severe in rats implanted with 85As2 than in those implanted with MKN45cl85. Moreover, human leukemia inhibitory factor (LIF), a known cachectic factor, and hypothalamic orexigenic peptide mRNA levels increased in the models, whereas hypothalamic anorexigenic peptide mRNA levels decreased. Surgical removal of the tumor not only abolished cachexia symptoms but also reduced plasma LIF levels to below detectable limits. Importantly, oral administration of rikkunshito, a traditional Japanese medicine, substantially ameliorated CC-related anorexia and body composition changes. In summary, our novel peritoneal dissemination-derived 85As2 rat model developed severe cachexia, possibly caused by LIF from cancer cells, that was ameliorated by rikkunshito. This model should provide a useful tool for further study into the mechanisms and treatment of stomach CC.


Assuntos
Caquexia/etiologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Neoplasias Gástricas/complicações , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Citocinas/sangue , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Masculino , Melaninas/genética , Melaninas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Consumo de Oxigênio , Hormônios Hipofisários/genética , Hormônios Hipofisários/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Nus , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
3.
Curr Pharm Des ; 18(31): 4839-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22632864

RESUMO

Traditional Japanese herbal, or Kampo medicine was developed and modified from Chinese herbal medicine. After the Japanese government approved Kampo for clinical use, much attention has been paid to establishing scientific evidence for the effectiveness of these medicines. Recent progress has been made in elucidating the mechanisms of action of some types of Kampo medicine, including rikkunshito (RKT), daikenchuto, and yokukansan. In this review, we focused on identifying the target molecules and the active ingredients of RKT. Thus far, many target molecules have been implicated in the mechanism of action of Kampo medicines, such as ion channels, enzymes, and receptors. In particular, G protein-coupled receptors are attractive candidates for explaining herbal medicine activity. This is particularly true of RKT, which is composed of 8 independent, crude drug extracts. Recent reports have shown that RKT elicits its effects through dual action to the G protein-coupled receptors: inhibition of serotonergic 5-HT2C and 5-HT2B receptors and activation of ghrelin receptors via specific ingredients of RKT. In addition, we suggest that the identification of the effective ingredients from Kampo medicines could contribute to the discovery and development of new drugs by means of modern high-throughput drug screening technology.


Assuntos
Medicina Kampo , Preparações de Plantas/farmacologia , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/metabolismo , Grelina/agonistas , Grelina/metabolismo , Humanos , Panax , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Preparações de Plantas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Grelina/agonistas , Receptores de Grelina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Zanthoxylum , Zingiberaceae
5.
Neuropharmacology ; 55(2): 154-65, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18550129

RESUMO

Mitragynine is a major indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa that has opium-like properties, although its chemical structure is quite different from that of morphine. We attempted to develop novel analgesics derived from mitragynine, and thus synthesized the ethylene glycol-bridged and C10-fluorinated derivative of mitragynine, MGM-9 [(E)-methyl 2-(3-ethyl-7a,12a-(epoxyethanoxy)-9-fluoro-1,2,3,4,6,7,12,12b-octahydro-8-methoxyindolo[2,3-a]quinolizin-2-yl)-3-methoxyacrylate]. We hypothesized that a dual-acting mu- and kappa-opioid agonist could produce potent antinociceptive effects with fewer rewarding effects compared with mu agonists. In this study, MGM-9 exhibited high affinity for mu- and kappa-opioid receptors with Ki values of 7.3 and 18 nM, respectively. MGM-9 showed a potent opioid agonistic effect, and its effects were meditated by mu- and kappa-opioid receptor mechanisms in in vitro assays. Subcutaneous and oral administration of MGM-9 produced potent antinociceptive effects in mouse tail-flick, hot-plate, and writhing tests. When administered orally, the antinociceptive effect of MGM-9 was seven to 22 times more potent than that of morphine. The antinociceptive effects of MGM-9 were mediated by both mu- and kappa-opioid receptors. Subcutaneous administration of MGM-9 twice daily for 5 days led to antinociceptive tolerance. In the gastrointestinal transit study, MGM-9 inhibited gastrointestinal transit, but its effect was weaker than that of morphine at equi-antinociceptive doses. Furthermore, MGM-9 induced less hyperlocomotion and fewer rewarding effects than morphine. The rewarding effect of MGM-9 was blocked by a mu antagonist and enhanced by a kappa antagonist. Taken together, the results suggest that MGM-9 is a promising novel analgesic that has a stronger antinociceptive effect and weaker adverse effects than morphine.


Assuntos
Limiar da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas , Recompensa , Alcaloides de Triptamina e Secologanina/farmacologia , Analgésicos Opioides/farmacologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Tolerância a Medicamentos , Trânsito Gastrointestinal/efeitos dos fármacos , Cobaias , Masculino , Camundongos , Morfina/uso terapêutico , Derivados da Morfina/uso terapêutico , Dor/classificação , Dor/etiologia , Medição da Dor/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/uso terapêutico , Fatores de Tempo
6.
J Toxicol Sci ; 32(3): 217-30, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17785939

RESUMO

Mitemcinal (GM-611) is a novel erythromycin-derived prokinetic agent that acts as an agonist at the motilin receptor. Erythromycin has shown QT prolongation and torsades de pointes (TdP) in humans and cisapride, a second class of prokinetic agents typified by the 5-HT(4) receptor agonist, has been terminated due to TdP. In this study an extended series of safety pharmacology protocols and evaluations have been undertaken to assess the potential risk of mitemcinal on QT prolongation or proarrhythmic effects. Mitemcinal and its metabolites, GM-577 and GM-625, inhibited the human ether-a-go-go-related gene (HERG) tail current in a concentration-dependent manner with IC(50) values of 20.2, 41.7, and 55.0 microM, respectively. Administration of 10 mg/kg mitemcinal in anesthetized guinea pigs resulted in a slight prolongation of the monophasic action potential (MAP) duration during atrial pacing at the plasma concentration of mitemcinal 1.1 microM, with low maximum increases in MAPD(70) (6.6%) and MAPD(90) (4.6%) relative to vehicle. A 10-min infusion of 20 mg/kg of mitemcinal in a proarrhythmic rabbit model did not evoke TdP even when QT and corrected QT (QTc) intervals were significantly prolonged. In this study, the Cmax plasma-free concentration of mitemcinal indicates that the prolongation was more than 400-fold that of the therapeutic dose. Our findings of a wide safety margin and the absence of TdP within this margin suggest that mitemcinal may provide sufficient safety in clinical use.


Assuntos
Eritromicina/análogos & derivados , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Fármacos Gastrointestinais/toxicidade , Motilidade Gastrointestinal/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Bloqueadores dos Canais de Potássio/toxicidade , Torsades de Pointes/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Animais , Linhagem Celular , Cisaprida/toxicidade , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Canal de Potássio ERG1 , Eletrocardiografia , Eritromicina/sangue , Eritromicina/toxicidade , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Fármacos Gastrointestinais/sangue , Cobaias , Átrios do Coração/efeitos dos fármacos , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Síndrome do QT Longo/metabolismo , Masculino , Bloqueadores dos Canais de Potássio/sangue , Coelhos , Medição de Risco , Fatores de Tempo , Transfecção
7.
J Neurochem ; 85(5): 1171-9, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12753076

RESUMO

The present study was designed to investigate the effect of repeated administration of a selective kappa-opioid receptor agonist (1S-trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide hydrochloride [(-)U-50,488H] on antinociception and G-protein activation induced by mu-opioid receptor agonists in mice. A single s.c. injection of (-)U-50,488H produced a dose-dependent antinociception, and this effect was reversed by a selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Furthermore, a single s.c. pre-treatment with (-)U-50,488H had no effect on the mu-opioid receptor agonist-induced antinociception. In contrast, repeated s.c. administration of (-)U-50,488H resulted in the development of tolerance to (-)U-50,488H-induced antinociception. Under these conditions, we demonstrated here that repeated s.c. injection of (-)U-50,488H significantly enhanced the antinociceptive effect of selective mu-opioid receptor agonists endomorphin-1, endomorphin-2 and [d-Ala2,N-MePhe4,Gly-ol5] enkephalin (DAMGO). Using the guanosine-5'-o-(3-[35S]thio) triphosphate ([35S]GTP gamma S) binding assay, we found that (-)U-50,488H was able to produce a nor-BNI-reversible increase in [35S]GTP gamma S binding to membranes of the mouse thalamus, which has a high level of kappa-opioid receptors. Repeated administration of (-)U-50,488H caused a significant reduction in the (-)U-50,488H-stimulated [35S]GTP gamma S binding in this region, whereas chronic treatment with (-)U-50,488H exhibited the increase in the endomorphin-1-, endomorphin-2- and DAMGO-stimulated [35S]GTP gamma S bindings in membranes of the thalamus and periaqueductal gray. These results suggest that repeated stimulation of kappa-opioid receptors leads to the heterologous up-regulation of mu-opioid receptor functions in the thalamus and periaqueductal gray regions, which may be associated with the supersensitivity of mu-opioid receptor-mediated antinociception.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Receptores Opioides kappa/fisiologia , Receptores Opioides mu/fisiologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos/farmacologia , Analgésicos não Narcóticos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Ligação Competitiva/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Masculino , Bulbo/química , Camundongos , Camundongos Endogâmicos ICR , Oligopeptídeos/farmacologia , Medição da Dor/efeitos dos fármacos , Ponte/química , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas , Tálamo/química , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA