Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 117(4): 1239-1249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016933

RESUMO

Soybean oil is the second most produced edible vegetable oil and is used for many edible and industrial materials. Unfortunately, it has the disadvantage of 'reversion flavor' under photooxidative conditions, which produces an off-odor and decreases the quality of edible oil. Reversion flavor and off-odor are caused by minor fatty acids in the triacylglycerol of soybean oil known as furan fatty acids, which produce 3-methyl-2,4-nonanedione (3-MND) upon photooxidation. As a solution to this problem, a reduction in furan fatty acids leads to a decrease in 3-MND, resulting in a reduction in the off-odor induced by light exposure. However, there are no reports on the genes related to the biosynthesis of furan fatty acids in soybean oil. In this study, four mutant lines showing low or no furan fatty acid levels in soybean seeds were isolated from a soybean mutant library. Positional cloning experiments and homology search analysis identified two genes responsible for furan fatty acid biosynthesis in soybean: Glyma.20G201400 and Glyma.04G054100. Ectopic expression of both genes produced furan fatty acids in transgenic soybean hairy roots. The structure of these genes is different from that of the furan fatty acid biosynthetic genes in photosynthetic bacteria. Homologs of these two group of genes are widely conserved in the plant kingdom. The purified oil from the furan fatty acid mutant lines had lower amounts of 3-MND and reduced off-odor after light exposure, compared with oil from the wild-type.


Assuntos
Ácidos Graxos , Óleo de Soja , Óleo de Soja/genética , Ácidos Graxos/metabolismo , Odorantes/análise , Glycine max/genética , Mutação , Furanos/metabolismo , Sementes/genética , Proteínas de Plantas/metabolismo
2.
Cell ; 180(4): 666-676.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084339

RESUMO

The mystery of general anesthesia is that it specifically suppresses consciousness by disrupting feedback signaling in the brain, even when feedforward signaling and basic neuronal function are left relatively unchanged. The mechanism for such selectiveness is unknown. Here we show that three different anesthetics have the same disruptive influence on signaling along apical dendrites in cortical layer 5 pyramidal neurons in mice. We found that optogenetic depolarization of the distal apical dendrites caused robust spiking at the cell body under awake conditions that was blocked by anesthesia. Moreover, we found that blocking metabotropic glutamate and cholinergic receptors had the same effect on apical dendrite decoupling as anesthesia or inactivation of the higher-order thalamus. If feedback signaling occurs predominantly through apical dendrites, the cellular mechanism we found would explain not only how anesthesia selectively blocks this signaling but also why conscious perception depends on both cortico-cortical and thalamo-cortical connectivity.


Assuntos
Anestésicos Gerais/farmacologia , Córtex Cerebral/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Antagonistas Colinérgicos/farmacologia , Estado de Consciência , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Células Piramidais/fisiologia , Transmissão Sináptica , Tálamo/citologia , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA