Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 12(5): e0174435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28489857

RESUMO

INTRODUCTION: Vitamin D insufficiency, defined as 25-hydroxyvitamin D (25(OH)D) levels < 75nmol/L is associated with cardio-metabolic dysfunction. Vitamin D insufficiency is associated with inflammation and fibrosis, but it remains uncertain whether these anomalies are readily reversible. Therefore, we aimed to determine the effects of vitamin D supplementation on markers of: 1) nitric oxide (NO) signaling, 2) inflammation, and 3) fibrosis, in healthy volunteers with mild hypovitaminosis. METHODS: Healthy volunteers (n = 35) (mean age: 45 ± 11 years) with 25(OH)D levels <75nmol/L, received vitamin D supplementation (Ostelin ® capsules 2000IU) for 12 weeks. Resting systolic and diastolic blood pressures (BP) were assessed. Routine biochemistry was examined. Plasma concentrations of asymmetric dimethylarginine (ADMA), thrombospondin-1 (TSP-1), plasminogen activator inhibitor-1 (PAI-1), hs-CRP, activin-A, and follistatin-like 3 (FSTL3) were quantitated. RESULTS: Vitamin D administration for 12 weeks significantly increased 25-(OH)D levels (48.8 ± 16 nmol/L to 100.8 ± 23.7 nmol/L, p<0.001). There was significant lowering of systolic and diastolic BP, while there was no significant change in lipid profiles, or fasting insulin. Plasma concentrations of ADMA, hs-CRP, PAI-1, activin A, and FSTL-3 did not change with vitamin D supplementation. However, there was a marked reduction of TSP-1 (522.7 ± 379.8 ng/mL vs 206.7 ± 204.5 ng/mL, p<0.001). CONCLUSIONS: Vitamin D supplementation in vitamin D insufficient, but otherwise healthy individuals markedly decreased TSP-1 levels and blood pressure. Since TSP-1 suppresses signaling of NO, it is possible that the fall in BP is engendered by restoration of NO effect.


Assuntos
Pressão Sanguínea , Trombospondina 1/sangue , Vitamina D/administração & dosagem , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Austrália do Sul
2.
Eur J Pharmacol ; 590(1-3): 290-6, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18585377

RESUMO

Understanding of the pathophysiology of aortic valve stenosis (AVS) and finding potentially effective treatments are impeded by the lack of suitable AVS animal models. A previous study demonstrated the development of AVS in rabbits with vitamin D(2) and cholesterol supplementation without any hemodynamic changes in the cholesterol supplemented group alone. The current study aimed to determine whether AVS develops in an animal model with vitamin D(2) supplementation alone, and to explore pathophysiological mechanisms underlying this process. The effects of 8 weeks' treatment with vitamin D(2) alone (n=8) at 25,000 IU/4 days weekly on aortic valve structure and function were examined in male New Zealand white rabbits. Echocardiographic aortic valve backscatter (AV(BS)), transvalvular velocity, and transvalvular pressure gradient were utilized to quantitate changes in valve structure and function. Valvular histology/immunochemistry and function were examined after 8 weeks. Changes in valves were compared with those in endothelial function and in valvular measurement of thioredoxin-interacting protein (TXNIP), a marker/mediator of reactive oxygen species-induced oxidative stress. Vitamin D(2) treated rabbits developed AVS with increased AV(BS) (17.6+/-1.4 dB vs 6.7+/-0.8 dB, P<0.0001), increased transvalvular velocity and transvalvular pressure gradient (both P<0.01 via 2-way ANOVA) compared to the control group. There was associated valve calcification, lipid deposition and macrophage infiltration. Endothelial function was markedly impaired, and intravalvular TXNIP concentration increased. In this model, vitamin D(2) induces the development of AVS with histological features similar to those of early AVS in humans and associated endothelial dysfunction/redox stress. AVS development may result from the loss of nitric oxide suppression of TXNIP expression.


Assuntos
Estenose da Valva Aórtica/induzido quimicamente , Proteínas de Transporte/fisiologia , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Ergocalciferóis/administração & dosagem , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , Estenose da Valva Aórtica/fisiopatologia , Proteínas de Transporte/análise , Ecocardiografia , Hipercolesterolemia/complicações , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Estresse Oxidativo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA