RESUMO
The recent Ebola virus (EBOV) outbreak in West Africa was the largest recorded in history with over 28,000 cases, resulting in >11,000 deaths including >500 healthcare workers. A focused screening and lead optimization effort identified 4b (GS-5734) with anti-EBOV EC50 = 86 nM in macrophages as the clinical candidate. Structure activity relationships established that the 1'-CN group and C-linked nucleobase were critical for optimal anti-EBOV potency and selectivity against host polymerases. A robust diastereoselective synthesis provided sufficient quantities of 4b to enable preclinical efficacy in a non-human-primate EBOV challenge model. Once-daily 10 mg/kg iv treatment on days 3-14 postinfection had a significant effect on viremia and mortality, resulting in 100% survival of infected treated animals [ Nature 2016 , 531 , 381 - 385 ]. A phase 2 study (PREVAIL IV) is currently enrolling and will evaluate the effect of 4b on viral shedding from sanctuary sites in EBOV survivors.
Assuntos
Alanina/análogos & derivados , Amidas/química , Doença pelo Vírus Ebola/tratamento farmacológico , Ácidos Fosfóricos/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Ribonucleotídeos/química , Viroses/tratamento farmacológico , Monofosfato de Adenosina/análogos & derivados , Alanina/química , Linhagem Celular , Descoberta de Drogas , Humanos , Testes de Sensibilidade Microbiana , Pró-Fármacos/síntese química , Relação Estrutura-AtividadeRESUMO
Novel 4'-substituted ß-d-2'-deoxy-2'-α-fluoro (2'd2'F) nucleoside inhibitors of respiratory syncytial virus (RSV) are reported. The introduction of 4'-substitution onto 2'd2'F nucleoside analogs resulted in compounds demonstrating potent cell based RSV inhibition, improved inhibition of the RSV polymerase by the nucleoside triphosphate metabolites, and enhanced selectivity over incorporation by mitochondrial RNA and DNA polymerases. Selectivity over the mitochondrial polymerases was found to be extremely sensitive to the specific 4'-substitution and not readily predictable. Combining the most potent and selective 4'-groups from N-nucleoside analogs onto a 2'd2'F C-nucleoside analog resulted in the identification of ß-D-2'-deoxy-2'-α-fluoro-4'-α-cyano-5-aza-7,9-dideaza adenosine as a promising nucleoside lead for RSV.