RESUMO
Digestibility of ether extract (EE) or fatty acids (FA) is traditionally measured by chemical analyses for EE or GLC methods for FA combined with marker concentration in diet and digesta or feces. Digestibility of EE or FA may be predicted by marker concentrations and spectral analyses of diet and digesta or feces. On the basis of Beer's law, a noncalibration spectroscopic method, which used functional group digestibility (FGD) determined with marker concentration and peak intensity of spectra of diets and undigested residues (digesta or feces), was developed to predict the apparent ileal digestibility (AID) of total FA and apparent total tract digestibility (ATTD) of EE. To validate, 4 diets containing 30% flaxseed and field pea coextruded with 4 extruder treatments and a wheat and soybean basal diet with predetermined AID of total FA and ATTD of EE were used. Samples of ingredients, diets, and freeze-dried digesta and feces were scanned on a Fourier transform infrared (FT-IR) instrument with a single-reflection attenuated total reflection (ATR) accessory. The intensity of either the methylene (CH2) antisymmetric stretching peak at 2,923 cm(-1) (R(2) = 0.90, P < 0.01) or the symmetric stretching peak at 2,852 cm(-1) (R(2) = 0.86, P < 0.01) of ingredients, diet, and digesta spectra was related strongly to the concentration of total FA. The AID of total FA of diets measured using GLC was predicted by the spectroscopic method using FGD at 2,923 and 2,852 cm(-1) (R(2) = 0.75, P < 0.01) with a bias of 0.54 (SD = 3.78%) and -1.35 (SD = 3.74%), respectively. The accumulated peak intensity in the region between 1,766 and 1,695 cm(-1) of spectra was related to EE concentration in ingredients and diets (R(2) = 0.61, P = 0.01) and feces (R(2) = 0.88, P < 0.01). The relation was improved by using second-derivative spectra of the sum of peak intensities at 1,743 and 1,710 cm(-1) for ingredients and diets (R(2) = 0.90, P = 0.01) and at 1,735 and 1,710 cm(-1) for feces (R(2) = 0.92, P < 0.01). The ATTD of EE of test diets determined with proximate analysis was estimated by the FGD of nonderivative spectra with or without baseline (R(2) = 0.90, P < 0.01) with a bias of 3.15 (SD = 3.14%) and 3.50 (SD = 3.24%), respectively. In conclusion, instead of using GLC methods or predictions based on calibrations, the AID of total FA and ATTD of EE can also be estimated directly from ATR FT-IR spectra, provided the ratio of marker in the diet and undigested residue is known.
Assuntos
Ração Animal/análise , Dieta/veterinária , Digestão/fisiologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sus scrofa/fisiologia , Animais , Catéteres/veterinária , Éter , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Fezes/química , Linho/química , Íleo/fisiologia , Pisum sativum/química , Extratos Vegetais/metabolismo , Glycine max/química , Suínos , Triticum/químicaRESUMO
One hundred primiparous and multiparous Holstein cows were used in an experiment to evaluate the effect of supplementing diets with either a plant- or an animal-based source of rumen-undegradable protein (RUP), with or without AA supplementation, during the transition period and early lactation on milk production response. The experimental design was a randomized block design with approximately one-third of the cows being primiparous. Cows were assigned to 1 of 4 prepartum diets introduced 3 wk before the expected calving date and switched to the corresponding postpartum diet at calving. Diets 1 (AMI) and 2 (AMI+) included a vegetable RUP source (heat- and lignosulfonate-treated canola meal), with diet 2 containing supplemental Lys x HCl and Met hydroxy analog sources [D,L-2 hydroxy-4-(methylthio)-butanoic acid; Alimet feed supplement]. Diets 3 (PRO) and 4 (PRO+) consisted of a blend of animal RUP sources (blood meal, fish meal, feather meal, and porcine meat and bone meal), with diet 4 containing supplemental Lys x HCl and Met hydroxy analog sources [D,L-2 hydroxy-4-(methylthio)-butanoic acid; Alimet]. During the first 4 wk of lactation, dry matter intake was less when synthetic Lys x HCl and Alimet were supplemented, but this effect was no longer evident in wk 5 to 9 of the experiment. Interestingly, despite the initial decrease in dry matter intake in the cows fed AA-supplemented diets, there was no effect of treatment on milk production or the ratio of fat-corrected milk to dry matter intake throughout the 17 wk of the study. Undegradable protein source (vegetable vs. animal) did not affect dry matter intake, milk production, or 3.5% fat-corrected milk production for the first 17 wk of lactation. The results of this study indicate that heat- and lignosulfonate-treated canola meal can be used as a source of undegradable protein in place of high-quality rumen-undegradable animal protein sources without negative effects on milk production when diets are equivalent in rumen degradable protein, RUP, and metabolizable Met and Lys. Despite other reports citing clear benefits to feeding supplemental synthetic Lys or Met in diets fed to high-producing lactating dairy cows, we were unable to provide additional evidence to support these findings. Additionally, there was a trend for whole-blood Lys concentrations to be greater for diets supplemented with Lys x HCl.