Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 265: 119791, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476565

RESUMO

Voice-sensitivity in the auditory cortex of a range of mammals has been proposed to be determined primarily by tuning to conspecific auditory stimuli, but recent human findings indicate a role for a more general tuning to voicelikeness. Vocal emotional valence, a central characteristic of vocalisations, has been linked to the same basic acoustic parameters across species. Comparative neuroimaging revealed that during voice perception, such acoustic parameters modulate emotional valence-sensitivity in auditory cortical regions in both family dogs and humans. To explore the role of voicelikeness in auditory emotional valence-sensitivity across species, here we constructed artificial emotional sounds in two sound categories: voice-like vs. sine-wave sounds, parametrically modulating two main acoustic parameters, f0 and call length. We hypothesised that if mammalian auditory systems are characterised by a general tuning to voicelikeness, voice-like sounds will be processed preferentially, and acoustic parameters for voice-like sounds will be processed differently than for sine-wave sounds - both in dogs and humans. We found cortical areas in both species that responded stronger to voice-like than to sine-wave stimuli, while there were no regions responding stronger to sine-wave sounds in either species. Additionally, we found that in bilateral primary and emotional valence-sensitive auditory regions of both species, the processing of voice-like and sine-wave sounds are modulated by f0 in opposite ways. These results reveal functional similarities between evolutionarily distant mammals for processing voicelikeness and its effect on processing basic acoustic cues of vocal emotions.


Assuntos
Córtex Auditivo , Voz , Humanos , Cães , Animais , Percepção Auditiva , Imageamento por Ressonância Magnética/métodos , Estimulação Acústica/métodos , Córtex Auditivo/diagnóstico por imagem , Emoções , Mamíferos
2.
Psychol Med ; 51(12): 2083-2093, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32329710

RESUMO

BACKGROUND: Schizophrenia (SZ) is a complex disorder characterized by a range of behavioral and cognitive symptoms as well as structural and functional alterations in multiple cortical and subcortical structures. SZ is associated with reduced functional network connectivity involving core regions such as the anterior cingulate cortex (ACC) and the thalamus. However, little is known whether effective coupling, the directed influence of one structure over the other, is altered during rest in the ACC-thalamus network. METHODS: We collected resting-state fMRI and diffusion-weighted MRI data from 18 patients and 20 healthy controls. We analyzed fronto-thalamic effective connectivity using dynamic causal modeling for cross-spectral densities in a network consisting of the ACC and the left and right medio-dorsal thalamic regions. We studied structural connectivity using fractional anisotropy (FA). RESULTS: We found decreased coupling strength from the right thalamus to the ACC and from the right thalamus to the left thalamus, as well as increased inhibitory intrinsic connectivity in the right thalamus in patients relative to controls. ACC-to-left thalamus coupling strength correlated with the Positive and Negative Syndrome Scale (PANSS) total positive syndrome score and with delusion score. Whole-brain structural analysis revealed several tracts with reduced FA in patients, with a maximum decrease in white matter tracts containing fronto-thalamic and cingulo-thalamic fibers. CONCLUSIONS: We found altered effective and structural connectivity within the ACC-thalamus network in SZ. Our results indicate that ACC-thalamus network activity at rest is characterized by reduced thalamus-to-ACC coupling. We suggest that positive symptoms may arise as a consequence of compensatory measures to imbalanced fronto-thalamic coupling.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Delusões , Tálamo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Giro do Cíngulo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA