RESUMO
BACKGROUND AND PURPOSE: We hypothesized that an in vitro, stretch-based model of neural injury may be useful to identify compounds that decrease the cellular damage in neurotrauma. EXPERIMENTAL APPROACH: We screened three neural cell lines (B35, RN33B and SH-SY5Y) subjected to two differentiation methods and selected all-trans-retinoic acid-differentiated B35 rat neuroblastoma cells subjected to rapid stretch injury, coupled with a subthreshold concentration of H2 O2 , for the screen. The model induced marked alterations in gene expression and proteomic signature of the cells and culminated in delayed cell death (LDH release) and mitochondrial dysfunction [reduced 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) conversion]. Follow-up studies utilized human stem cell-derived neurons subjected to rapid stretch injury. KEY RESULTS: From screening of a composite library of 3500 drugs, five drugs (when applied in a post-treatment regimen relative to stretch injury) improved both LDH and MTT responses. The effects of rifampicin were investigated in further detail. Rifampicin reduced cell necrosis and apoptosis and improved cellular bioenergetics. In a second model (stretch injury in human stem cell-derived neurons), rifampicin pretreatment attenuated LDH release, protected against the loss of neurite length and maintained neuron-specific class III ß-tubulin immunoreactivity. CONCLUSIONS AND IMPLICATIONS: We conclude that the current model is suitable for medium-throughput screening to identify compounds with neuroprotective potential. Rifampicin, when applied either in pre- or post-treatment, improves the viability of neurons subjected to stretch injury and protects against neurite loss. Rifampicin may be a candidate for repurposing for the therapy of traumatic brain injury. LINKED ARTICLES: This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Rifampina/farmacologia , Rifampina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Peróxido de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Mecânico , Sais de Tetrazólio/metabolismoRESUMO
Hydrogen sulfide (H2S) is an important biological mediator, and synthetic H2S donating molecules provide an important class of investigative tools for H2S research. Here, we report esterase-activated H2S donors that function by first releasing carbonyl sulfide (COS), which is rapidly converted to H2S by the ubiquitous enzyme carbonic anhydrase (CA). We report the synthesis, self-immolative decomposition, and H2S release profiles of the developed scaffolds. In addition, the developed esterase-triggered COS/H2S donors exhibit higher levels of cytotoxicity than equivalent levels of Na2S or the common H2S donors GYY4137 and AP39. Using cellular bioenergetics measurements, we establish that the developed donors reduce cellular respiration and ATP synthesis in BEAS 2B human lung epithelial cells, which is consistent with COS/H2S inhibition of cytochrome c oxidase in the mitochondrial respiratory chain although not observed with common H2S donors at the same concentrations. Taken together, these results may suggest that COS functions differently than H2S in certain biological contexts or that the developed donors are more efficient at delivering H2S than other common H2S-releasing motifs.
Assuntos
Compostos de Benzil/farmacologia , Metabolismo Energético/efeitos dos fármacos , Esterases/farmacologia , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Óxidos de Enxofre/metabolismo , Tiocarbamatos/farmacologia , Compostos de Benzil/química , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Esterases/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Tiocarbamatos/químicaRESUMO
Therapeutic manipulation of the gasotransmitter hydrogen sulfide (H2S) has recently been proposed as a novel targeted anticancer approach. Here we show that human lung adenocarcinoma tissue expresses high levels of hydrogen sulfide (H2S) producing enzymes, namely, cystathionine beta-synthase (CBS), cystathionine gamma lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), in comparison to adjacent lung tissue. In cultured lung adenocarcinoma but not in normal lung epithelial cells elevated H2S stimulates mitochondrial DNA repair through sulfhydration of EXOG, which, in turn, promotes mitochondrial DNA repair complex assembly, thereby enhancing mitochondrial DNA repair capacity. In addition, inhibition of H2S-producing enzymes suppresses critical bioenergetics parameters in lung adenocarcinoma cells. Together, inhibition of H2S-producing enzymes sensitize lung adenocarcinoma cells to chemotherapeutic agents via induction of mitochondrial dysfunction as shown in in vitro and in vivo models, suggesting a novel mechanism to overcome tumor chemoresistance.
Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Antineoplásicos/uso terapêutico , Reparo do DNA , Metabolismo Energético , Sulfeto de Hidrogênio/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Antineoplásicos/farmacologia , Reparo do DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Células Tumorais CultivadasRESUMO
This study evaluated the effects of AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl) phenoxy)decyl) triphenyl phosphonium bromide], a mitochondrially targeted donor of hydrogen sulfide (H2S) in an in vitro model of hypoxia/oxidative stress injury in NRK-49F rat kidney epithelial cells (NRK cells) and in a rat model of renal ischemia-reperfusion injury. Renal oxidative stress was induced by the addition of glucose oxidase, which generates hydrogen peroxide in the culture medium at a constant rate. Glucose oxidase (GOx)-induced oxidative stress led to mitochondrial dysfunction, decreased intracellular ATP content, and, at higher concentrations, increased intracellular oxidant formation (estimated by the fluorescent probe 2, 7-dichlorofluorescein, DCF) and promoted necrosis (estimated by the measurement of lactate dehydrogenase release into the medium) of the NRK cells in vitro. Pretreatment with AP39 (30-300ânM) exerted a concentration-dependent protective effect against all of the above effects of GOx. Most of the effects of AP39 followed a bell-shaped concentration-response curve; at the highest concentration of GOx tested, AP39 was no longer able to afford cytoprotective effects. Rats subjected to renal ischemia/reperfusion responded with a marked increase (over four-fold over sham control baseline) blood urea nitrogen and creatinine levels in blood, indicative of significant renal damage. This was associated with increased neutrophil infiltration into the kidneys (assessed by the myeloperoxidase assay in kidney homogenates), increased oxidative stress (assessed by the malondialdehyde assay in kidney homogenates), and an increase in plasma levels of IL-12. Pretreatment with AP39 (0.1, 0.2, and 0.3âmg/kg) provided a dose-dependent protection against these pathophysiological alterations; the most pronounced protective effect was observed at the 0.3âmg/kg dose of the H2S donor; nevertheless, AP39 failed to achieve a complete normalization of any of the injury markers measured. The partial protective effects of AP39 correlated with a partial improvement of kidney histological scores and reduced TUNEL staining (an indicator of DNA damage and apoptosis). In summary, the mitochondria-targeted H2S donor AP39 exerted dose-dependent protective effects against renal epithelial cell injury in vitro and renal ischemia-reperfusion injury in vivo. We hypothesize that the beneficial actions of AP39 are related to the reduction of cellular oxidative stress, and subsequent attenuation of various positive feed-forward cycles of inflammatory and oxidative processes.
Assuntos
Injúria Renal Aguda/prevenção & controle , Citoproteção/fisiologia , Sulfeto de Hidrogênio/metabolismo , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Tionas/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Células Epiteliais/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/uso terapêutico , Ratos Sprague-Dawley , Tionas/administração & dosagem , Tionas/uso terapêuticoRESUMO
Hydrogen sulfide (H2S), as a reducing agent and an antioxidant molecule, exerts protective effects against hyperglycemic stress in the vascular endothelium. The mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is an important biological source of H2S. We have recently demonstrated that 3-MST activity is inhibited by oxidative stress in vitro and speculated that this may have an adverse effect on cellular homeostasis. In the current study, given the importance of H2S as a vasorelaxant, angiogenesis stimulator and cellular bioenergetic mediator, we first determined whether the 3-MST/H2S system plays a physiological regulatory role in endothelial cells. Next, we tested whether a dysfunction of this pathway develops during the development of hyperglycemia and µmol/L to diabetes-associated vascular complications. Intraperitoneal (IP) 3-MP (1 mg/kg) raised plasma H2S levels in rats. 3-MP (10 1 mmol/L) promoted angiogenesis in vitro in bEnd3 microvascular endothelial cells and in vivo in a Matrigel assay in mice (0.3-1 mg/kg). In vitro studies with bEnd3 cell homogenates demonstrated that the 3-MP-induced increases in H2S production depended on enzymatic activity, although at higher concentrations (1-3 mmol/L) there was also evidence for an additional nonenzymatic H2S production by 3-MP. In vivo, 3-MP facilitated wound healing in rats, induced the relaxation of dermal microvessels and increased mitochondrial bioenergetic function. In vitro hyperglycemia or in vivo streptozotocin diabetes impaired angiogenesis, attenuated mitochondrial function and delayed wound healing; all of these responses were associated with an impairment of the proangiogenic and bioenergetic effects of 3-MP. The antioxidants DL-α-lipoic acid (LA) in vivo, or dihydrolipoic acid (DHLA) in vitro restored the ability of 3-MP to stimulate angiogenesis, cellular bioenergetics and wound healing in hyperglycemia and diabetes. We conclude that diabetes leads to an impairment of the 3-MST/H2S pathway, and speculate that this may contribute to the pathogenesis of hyperglycemic endothelial cell dysfunction. We also suggest that therapy with H2S donors, or treatment with the combination of 3-MP and lipoic acid may be beneficial in improving angiogenesis and bioenergetics in hyperglycemia.
Assuntos
Endotélio Vascular/fisiologia , Metabolismo Energético/fisiologia , Sulfeto de Hidrogênio/metabolismo , Redes e Vias Metabólicas , Neovascularização Fisiológica , Sulfurtransferases/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Cisteína/administração & dosagem , Cisteína/análogos & derivados , Cisteína/farmacologia , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Células Endoteliais , Endotélio Vascular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Sulfeto de Hidrogênio/sangue , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Consumo de Oxigênio , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Sulfurtransferases/genética , Ácido Tióctico/farmacologia , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacologiaRESUMO
The purpose of the current study was to investigate the effect of the recently synthesized mitochondrially-targeted H2S donor, AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], on bioenergetics, viability, and mitochondrial DNA integrity in bEnd.3 murine microvascular endothelial cells in vitro, under normal conditions, and during oxidative stress. Intracellular H2S was assessed by the fluorescent dye 7-azido-4-methylcoumarin. For the measurement of bioenergetic function, the XF24 Extracellular Flux Analyzer was used. Cell viability was estimated by the combination of the MTT and LDH methods. Oxidative protein modifications were measured by the Oxyblot method. Reactive oxygen species production was monitored by the MitoSOX method. Mitochondrial and nuclear DNA integrity were assayed by the Long Amplicon PCR method. Oxidative stress was induced by addition of glucose oxidase. Addition of AP39 (30-300 nM) to bEnd.3 cells increased intracellular H2S levels, with a preferential response in the mitochondrial regions. AP39 exerted a concentration-dependent effect on mitochondrial activity, which consisted of a stimulation of mitochondrial electron transport and cellular bioenergetic function at lower concentrations (30-100 nM) and an inhibitory effect at the higher concentration of 300 nM. Under oxidative stress conditions induced by glucose oxidase, an increase in oxidative protein modification and an enhancement in MitoSOX oxidation was noted, coupled with an inhibition of cellular bioenergetic function and a reduction in cell viability. AP39 pretreatment attenuated these responses. Glucose oxidase induced a preferential damage to the mitochondrial DNA; AP39 (100 nM) pretreatment protected against it. In conclusion, the current paper documents antioxidant and cytoprotective effects of AP39 under oxidative stress conditions, including a protection against oxidative mitochondrial DNA damage.
Assuntos
DNA Mitocondrial/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Organofosfatos/farmacologia , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Tionas/farmacologia , Animais , Linhagem Celular , Reparo do DNA/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Espaço Intracelular/efeitos dos fármacos , CamundongosRESUMO
Recent data show that colon cancer cells selectively overexpress cystathionine-ß-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1-3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time- and concentration-dependent modulatory effects on cell proliferation. At 0.1-1 mM SAM increased HCT116 proliferation between 0 and 12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12-24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1 h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at 0.1-1 mM, while 3 mM was inhibitory. Longer-term (72 h) exposure of HCT116 cells to all concentrations of SAM tested suppressed mitochondrial oxygen consumption rate, cellular ATP content and cell viability. The stimulatory effect of SAM on bioenergetics was attenuated in cells with stable CBS silencing, while the inhibitory effects were unaffected. In NCM356 cells SAM exerted smaller effects on cellular bioenergetics than in HCT116 cells. We have also observed a downregulation of CBS in response to prolonged exposure of SAM both in HCT116 and NCM356 cells. Taken together, the results demonstrate that H2S production in HCT116 cells is stimulated by the allosteric CBS activator, SAM. At low-to intermediate levels and early time periods the resulting H2S serves as an endogenous cancer cell growth and bioenergetic factor. In contrast, the inhibition of cell proliferation and bioenergetic function by SAM does not appear to relate to adverse autocrine effects of H2S resulting from CBS over-stimulation but, rather to CBS-independent pharmacological effects.
Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Cistationina beta-Sintase/metabolismo , Metabolismo Energético/efeitos dos fármacos , S-Adenosilmetionina/farmacologia , Linhagem Celular , Cistationina beta-Sintase/efeitos dos fármacos , Cistationina beta-Sintase/genética , Relação Dose-Resposta a Droga , Inativação Gênica , Células HCT116 , Humanos , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , RNA Interferente PequenoRESUMO
The physiological functions of hydrogen sulfide (H2S) include vasorelaxation, stimulation of cellular bioenergetics, and promotion of angiogenesis. Analysis of human colon cancer biopsies and patient-matched normal margin mucosa revealed the selective up-regulation of the H2S-producing enzyme cystathionine-ß-synthase (CBS) in colon cancer, resulting in an increased rate of H2S production. Similarly, colon cancer-derived epithelial cell lines (HCT116, HT-29, LoVo) exhibited selective CBS up-regulation and increased H2S production, compared with the nonmalignant colonic mucosa cells, NCM356. CBS localized to the cytosol, as well as the mitochondrial outer membrane. ShRNA-mediated silencing of CBS or its pharmacological inhibition with aminooxyacetic acid reduced HCT116 cell proliferation, migration, and invasion; reduced endothelial cell migration in tumor/endothelial cell cocultures; and suppressed mitochondrial function (oxygen consumption, ATP turnover, and respiratory reserve capacity), as well as glycolysis. Treatment of nude mice with aminooxyacetic acid attenuated the growth of patient-derived colon cancer xenografts and reduced tumor blood flow. Similarly, CBS silencing of the tumor cells decreased xenograft growth and suppressed neovessel density, suggesting a role for endogenous H2S in tumor angiogenesis. In contrast to CBS, silencing of cystathionine-γ-lyase (the expression of which was unchanged in colon cancer) did not affect tumor growth or bioenergetics. In conclusion, H2S produced from CBS serves to (i) maintain colon cancer cellular bioenergetics, thereby supporting tumor growth and proliferation, and (ii) promote angiogenesis and vasorelaxation, consequently providing the tumor with blood and nutritients. The current findings identify CBS-derived H2S as a tumor growth factor and anticancer drug target.
Assuntos
Proliferação de Células , Neoplasias do Colo/metabolismo , Cistationina beta-Sintase/metabolismo , Metabolismo Energético , Sulfeto de Hidrogênio/metabolismo , Neovascularização Patológica , Animais , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Feminino , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Allergic airway inflammation is characterized by increased expression of pro-inflammatory mediators, inflammatory cell infiltration, mucus hypersecretion, and airway hyperresponsiveness, in parallel with oxidative DNA base and strand damage, whose etiological role is not understood. Our goal was to establish the role of 8-oxoguanine (8-oxoG), a common oxidatively damaged base, and its repair by 8-oxoguanine DNA glycosylase 1 (Ogg1) in allergic airway inflammatory processes. Airway inflammation was induced by intranasally administered ragweed (Ambrosia artemisiifolia) pollen grain extract (RWPE) in sensitized BALB/c mice. We utilized siRNA technology to deplete Ogg1 from airway epithelium; 8-oxoG and DNA strand break levels were quantified by Comet assays. Inflammatory cell infiltration and epithelial methaplasia were determined histologically, mucus and cytokines levels biochemically and enhanced pause was used as the main index of airway hyperresponsiveness. Decreased Ogg1 expression and thereby 8-oxoG repair in the airway epithelium conveyed a lower inflammatory response after RWPE challenge of sensitized mice, as determined by expression of Th2 cytokines, eosinophilia, epithelial methaplasia, and airway hyperresponsiveness. In contrast, 8-oxoG repair in Ogg1-proficient airway epithelium was coupled to an increase in DNA single-strand break (SSB) levels and exacerbation of allergen challenge-dependent inflammation. Decreased expression of the Nei-like glycosylases Neil1 and Neil2 that preferentially excise ring-opened purines and 5-hydroxyuracil, respectively, did not alter the above parameters of allergic immune responses to RWPE. These results show that DNA SSBs formed during Ogg1-mediated repair of 8-oxoG augment antigen-driven allergic immune responses. A transient modulation of OGG1 expression/activity in airway epithelial cells could have clinical benefits.
Assuntos
DNA Glicosilases/genética , Reparo do DNA , Hipersensibilidade Respiratória/enzimologia , Mucosa Respiratória/enzimologia , Ambrosia/imunologia , Animais , Linhagem Celular , DNA/metabolismo , Quebras de DNA de Cadeia Simples , DNA Glicosilases/metabolismo , Regulação para Baixo , Guanina/análogos & derivados , Guanina/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/enzimologia , Pneumonia/genética , Pneumonia/imunologia , Pólen/imunologia , RNA Interferente Pequeno , Hipersensibilidade Respiratória/genética , Mucosa Respiratória/imunologiaRESUMO
Mitochondrial AAA metalloproteases play a fundamental role in mitochondrial biogenesis and function. They have been identified in yeast and animals but not yet in plants. This work describes the isolation and sequence analysis of the full-length cDNA from the pea (Pisum sativum) with significant homology to the yeast matrix AAA (m-AAA) protease. The product of this clone was imported into isolated pea mitochondria where it was processed to its mature form (PsFtsH). We have shown that the central region of PsFtsH containing the chaperone domain is exposed to the matrix space. Furthermore, we have demonstrated that the pea protease can complement respiration deficiency in the yta10 and/or yta12 null yeast mutants, indicating that the plant protein can compensate for the loss of at least some of the important m-AAA functions in yeast. Based on biochemical experiments using isolated pea mitochondria, we propose that PsFtsH-like m-AAA is involved in the accumulation of the subunit 9 of the ATP synthase in the mitochondrial membrane.