Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 15(8): 2595-606, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27246451

RESUMO

Herein we report the discovery of a novel lead compound, oxyphylla A [(R)-4-(2-hydroxy-5-methylphenyl)-5-methylhexanoic acid] (from the fruit of Alpinia oxyphylla), which functions as a neuroprotective agent against Parkinson's disease. To identify a shortlist of candidates from the extract of A. oxyphylla, we employed an integrated strategy combining liquid chromatography/mass spectrometry, bioactivity-guided fractionation, and chemometric analysis. The neuroprotective effects of the shortlisted candidates were validated prior to scaling up the finalized list of potential neuroprotective constituents for more detailed chemical and biological characterization. Oxyphylla A has promising neuroprotective effects: (i) it ameliorates in vitro chemical-induced primary neuronal cell damage and (ii) alleviates chemical-induced dopaminergic neuron loss and behavioral impairment in both zebrafish and mice in vivo. Quantitative proteomics analyses of oxyphylla A-treated primary cerebellar granule neurons that had been intoxicated with 1-methyl-4-phenylpyridinium revealed that oxyphylla A activates nuclear factor-erythroid 2-related factor 2 (NRF2)-a master redox switch-and triggers a cascade of antioxidative responses. These observations were verified independently through western blot analyses. Our integrated metabolomics, chemometrics, and pharmacological strategy led to the efficient discovery of novel bioactive ingredients from A. oxyphylla while avoiding the nontargeting, labor-intensive steps usually required for identification of bioactive compounds. Our successful development of a synthetic route toward oxyphylla A should lead to its availability on a large scale for further functional development and pathological studies.


Assuntos
Alpinia/química , Descoberta de Drogas , Fármacos Neuroprotetores/isolamento & purificação , Doença de Parkinson/tratamento farmacológico , Animais , Caproatos/isolamento & purificação , Caproatos/farmacologia , Fracionamento Químico , Cromatografia Líquida , Cresóis/isolamento & purificação , Cresóis/farmacologia , Dopaminérgicos/isolamento & purificação , Dopaminérgicos/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Espectrometria de Massas , Camundongos , Degeneração Neural/tratamento farmacológico , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Peixe-Zebra
2.
Anal Chem ; 87(19): 10015-24, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26335518

RESUMO

Protein tyrosine nitration (PTN) is a signature hallmark of radical-induced nitrative stress in a wide range of pathophysiological conditions, with naturally occurring abundances at substoichiometric levels. In this present study, a fully automated four-dimensional platform, consisting of high-/low-pH reversed-phase dimensions with two additional complementary, strong anion (SAX) and cation exchange (SCX), chromatographic separation stages inserted in tandem, was implemented for the simultaneous mapping of endogenous nitrated tyrosine-containing peptides within the global proteomic context of a Macaca fascicularis cerebral ischemic stroke model. This integrated RP-SA(C)X-RP platform was initially benchmarked through proteomic analyses of Saccharomyces cerevisiae, revealing extended proteome and protein coverage. A total of 27 144 unique peptides from 3684 nonredundant proteins [1% global false discovery rate (FDR)] were identified from M. fascicularis cerebral cortex tissue. The inclusion of the S(A/C)X columns contributed to the increased detection of acidic, hydrophilic, and hydrophobic peptide populations; these separation features enabled the concomitant identification of 127 endogenous nitrated peptides and 137 transmembrane domain-containing peptides corresponding to integral membrane proteins, without the need for specific targeted enrichment strategies. The enhanced diversity of the peptide inventory obtained from the RP-SA(C)X-RP platform also improved analytical confidence in isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses.


Assuntos
Encéfalo/patologia , Cromatografia de Fase Reversa/métodos , Proteínas de Membrana/análise , Nitrocompostos/análise , Acidente Vascular Cerebral/metabolismo , Tirosina/análise , Animais , Encéfalo/metabolismo , Cromatografia por Troca Iônica/instrumentação , Cromatografia por Troca Iônica/métodos , Cromatografia de Fase Reversa/instrumentação , Desenho de Equipamento , Macaca fascicularis , Masculino , Proteínas de Membrana/metabolismo , Nitrocompostos/metabolismo , Proteômica/métodos , Acidente Vascular Cerebral/patologia , Tirosina/metabolismo
3.
Free Radic Biol Med ; 84: 331-343, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25769424

RESUMO

Polypharmacology-based strategies using drug combinations with different mechanisms of action are gaining increasing attention as a novel methodology to discover potentially innovative medicines for neurodegenerative disorders. We used this approach to examine the combined neuroprotective effects of two polyphenols, protocatechuic acid (PCA) and chrysin, identified from the fruits of Alpinia oxyphylla. Our results demonstrated synergistic neuroprotective effects, with chrysin enhancing the protective effects of PCA, resulting in greater cell viability and decreased lactate dehydrogenase release from 6-hydroxydopamine-treated PC12 cells. Their combination also significantly attenuated chemically induced dopaminergic neuron loss in both zebrafish and mice. We examined the molecular mechanisms underlying these collective cytoprotective effects through proteomic analysis of treated PC12 cells, resulting in the identification of 12 regulated proteins. Two were further characterized, leading to the determination that pretreatment with PCA and chrysin resulted in (i) increased nuclear factor-erythroid 2-related factor 2 protein expression and transcriptional activity; (ii) modulation of cellular redox status with the upregulated expression of hallmark antioxidant enzymes, including heme oxygenase-1, superoxide dismutase, and catalase; and (iii) decreased levels of malondialdehyde, a known lipid peroxidation product. Treatment with PCA and chrysin also inhibited activation of nuclear factor-κB and expression of inducible nitric oxide synthase. Our findings suggest that natural products, when used in combination, can be effective potential therapeutic agents for treating diseases such as Parkinson disease. A therapy involving both PCA and chrysin exhibits its enhanced neuroprotective effects through a combination of cellular mechanisms: antioxidant cytoprotection and anti-inflammation.


Assuntos
Antiparkinsonianos/farmacologia , Flavonoides/farmacologia , Hidroxibenzoatos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Antiparkinsonianos/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Avaliação Pré-Clínica de Medicamentos , Flavonoides/uso terapêutico , Heme Oxigenase-1/metabolismo , Hidroxibenzoatos/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Células PC12 , Proteoma/metabolismo , Proteômica , Ratos , Fator de Transcrição RelA/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA