Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Metallomics ; 15(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37898555

RESUMO

Using high pressure liquid chromatography (HPLC) coupled with selenium-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (Orbitrap MS/MS) detection, we previously found that far more selenium (Se) is present as selenosugar (seleno-N-acetyl galactosamine) in Se-adequate turkey liver than is present as selenocysteine (Sec) in true selenoproteins, and that selenosugars account for half of the Se in high-Se turkey liver. To expand these observations to mammals, we studied Se metabolism in rats fed graded levels of selenite from 0 to 5 µg Se/g for 4 wk. In Se-adequate (0.24 µg Se/g) rats, 43% of liver Se was present as Sec, 32% was present as selenosugars, and 22% as inorganic Se bound to protein. In liver of rats fed 5 µg Se/g as selenite, the quantity of Sec remained at the Se-adequate plateau (11% of total Se), 22% was present as low molecular weight (LMW) selenosugars with substantial additional selenosugars linked to protein, but 64% was present as inorganic Se bound to protein. No selenomethionine was found at any level of selenite supplementation. Below the Se requirement, Se is preferentially incorporated into Sec-selenoproteins. Above the dietary Se requirement, selenosugars become by far the major LMW water soluble Se species in liver, and levels of selenosugar-decorated proteins are far higher than Sec-selenoproteins, making these selenosugar-decorated proteins the major Se-containing protein species in liver with high Se supplementation. This accumulation of selenosugars linked to cysteines on proteins or the build-up of inorganic Se bound to protein may underlie Se toxicity at the molecular level.


Assuntos
Selênio , Ratos , Animais , Selênio/metabolismo , Ácido Selenioso/metabolismo , Selenocisteína/metabolismo , Espectrometria de Massas em Tandem , Selenoproteínas/metabolismo , Fígado/metabolismo , Suplementos Nutricionais , Mamíferos/metabolismo
2.
Metallomics ; 15(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37898557

RESUMO

Selenomethionine (SeMet) as a methionine analog can be incorporated into protein. In turkeys, we recently found that selenium (Se) as selenite is not metabolized to SeMet but rather to selenosugars (seleno-N-acetyl galactosamine) bound to protein as well as to selenocysteine (Sec) in selenoproteins. To characterize the metabolism of SeMet, we fed rats graded levels of SeMet from 0 to 5 µg Se/g in a Se-deficient diet for 4 wk, and investigated the fate and accumulation of liver Se using high pressure liquid chromatography (HPLC) coupled with Se-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (Orbitrap MS/MS) detection. Up to 0.24 µg Se/g (Se requirement for maximal glutathione peroxidase activity), Sec accounted for ∼40% of total liver Se whereas SeMet only accounted for 3-11%. Analysis of water-soluble extracts found negligible low molecular weight (LMW) Se species in rats fed 0 and 0.08 µg Se/g, including no SeMet. At 0.24 µg Se/g and above, SeMet accounted for only 10% of LMW Se species, whereas methyl- and glutathionyl-selenosugars accounted for 70% of LMW Se species. Above the Se requirement, SeMet was ∼30% of the proteinaceous amino acids, whereas Sec levels fell to 5% in rats fed 5 µg Se/g as SeMet. Last, considerably less inorganic Se was bound to liver protein with high SeMet as compared to selenite in a parallel study. SeMet is efficiently metabolized and mixes with the common Se metabolite pool, where Se is preferentially incorporated into Sec and Sec-selenoproteins until selenoproteins plateau; with high SeMet intake, Se is increasingly accumulated as LMW selenosugars and as selenosugar-decorated proteins.


Assuntos
Selênio , Selenometionina , Ratos , Animais , Selenometionina/metabolismo , Selenocisteína/metabolismo , Espectrometria de Massas em Tandem , Selênio/metabolismo , Ácido Selenioso/metabolismo , Selenoproteínas/metabolismo , Fígado/metabolismo , Suplementos Nutricionais/análise
3.
Food Chem ; 417: 135864, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924715

RESUMO

We present a novel microwave-assisted green synthesis of selenium nanoparticles (SeNPs) using yeast extract as source of a non-toxic reducing and capping agents. Effects of synthesis and gastrointestinal digestion conditions on the biogenic Se particle size distribution and number concentration using SP ICP MS were evaluated. The median equivalent diameter of SeNPs varied depending on the synthesis conditions. Upon incubation in simulated gastric juice, the increase of SeNPs size was observed, whereas after simulated intestinal juice addition, their size came back close to the initial value. The biomolecules contained in yeast extract, which play predominant role in the synthesis of SeNPs, were identified by non-targeted qualitative analysis using LC Orbitrap ESI MS. The use of the state-of-the-art MS techniques allowed both the comprehensive assessment of the processes leading to the SeNPs formation and the evaluation of their behavior under gastrointestinal conditions which is of utmost importance for their use as a novel selenium source.


Assuntos
Trato Gastrointestinal , Nanopartículas , Selênio , Antioxidantes/química , Espectrometria de Massas , Micro-Ondas , Nanopartículas/química , Selênio/química
4.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903308

RESUMO

Due to problems with selenium deficiency in humans, the search for new organic molecules containing this element in plant biofortification process is highly required. Selenium organic esters evaluated in this study (E-NS-4, E-NS-17, E-NS-71, EDA-11, and EDA-117) are based mostly on benzoselenoate scaffolds, with some additional halogen atoms and various functional groups in the aliphatic side chain of different length, while one compound contains a phenylpiperazine moiety (WA-4b). In our previous study, the biofortification of kale sprouts with organoselenium compounds (at the concentrations of 15 mg/L in the culture fluid) strongly enhanced the synthesis of glucosinolates and isothiocyanates. Thus, the study aimed to discover the relationships between molecular characteristics of the organoselenium compounds used and the amount of sulfur phytochemicals in kale sprouts. The statistical partial least square model with eigenvalues equaled 3.98 and 1.03 for the first and second latent components, respectively, which explained 83.5% of variance in the predictive parameters, and 78.6% of response parameter variance was applied to reveal the existence of the correlation structure between molecular descriptors of selenium compounds as predictive parameters and biochemical features of studied sprouts as response parameters (correlation coefficients for parameters in PLS model in the range-0.521 ÷ 1.000). This study supported the conclusion that future biofortifiers composed of organic compounds should simultaneously contain nitryl groups, which may facilitate the production of plant-based sulfur compounds, as well as organoselenium moieties, which may influence the production of low molecular weight selenium metabolites. In the case of the new chemical compounds, environmental aspects should also be evaluated.


Assuntos
Brassica , Compostos Organosselênicos , Compostos de Selênio , Selênio , Humanos , Selênio/metabolismo , Brassica/química , Compostos de Enxofre/metabolismo
5.
Metallomics ; 15(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496173

RESUMO

Automated and specific picking of selenium-containing molecular entities has not been an obvious option for software tools associated with electrospray high-resolution mass spectrometry (MS). In our study, a comprehensive pattern matching approach based on intra-isotopologue distance and isotopologue ratio data was critically evaluated in terms of reproducibility and selenium isotope selection on three samples, including selenized Torula yeast and the selenium hyperaccumulator plant Cardamine violifolia. Hydrophilic interaction liquid chromatography was applied to provide a one-step separation for water soluble metabolites to put an end to the need for either orthogonal setups or poor retention on reversed phase chromatography. Assistance from inductively coupled plasma-MS was taken only for chromatographic verification purposes, and the involvement of absolute mass defect (MD) data in selenometabolite-specific screening was assessed by multivariate statistical tools. High focus was placed on screening efficiency and on the validation of discovered selenized molecules to avoid reporting of artefacts. From the >1000 molecular entries detected, selenium-containing molecules were picked up with a recovery rate of >88% and a false positive rate of <10%. Isotop(ologu)e pairs of 78Se-80Se and 80Se-82Se proved to be the most performant in the detection. On the basis of accurate mass information and hypothetical deamination processes, elemental composition could be proposed for 72 species out of the 75 selenium species encountered without taking into account selenocompound databases. Absolute MD data were used to significantly differentiate a potentially sample-specific subgroup of false positive molecular entities from non-selenized and selenized entities.


Assuntos
Selênio , Selênio/metabolismo , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida , Saccharomyces cerevisiae/metabolismo
6.
Metallomics ; 15(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36583695

RESUMO

The influence of the fermentation process on selenite metabolism by a probiotic Bifidobacterium longum DD98 and its consequent enrichment in selenium (Se) were studied. The effects of sodium selenite (Na2SeO3) concentration (18-400 µg/ml), feeding time (12, 16, and 24 h), and fermentation stage (secondary and tertiary fermentation) were evaluated by measuring (i) the total Se content and its distribution between the water-soluble metabolome fraction and the water-insoluble fraction; (ii) the total concentrations of the two principal Se compounds produced: selenomethionine (SeMet) and γ-glutamyl-selenomethionine (γ-Glu-SeMet), and (iii) the speciation of Se in the metabolite fraction. The results revealed that the fermentation process notably changed the Se incorporation into metabolites (γ-Glu-SeMet and free SeMet) and proteins (bound-SeMet) in B. longum DD98. In particular, the production of SeMet was negatively correlated to that of γ-Glu-SeMet when no red precipitate was seen in the bacteria. The study offers a tool for the control of the optimization of the fermentation process towards the desired molecular speciation of the incorporated Se and hence contributes to the production of Se-enriched probiotics with good qualities and bioactivities.


Assuntos
Bifidobacterium longum , Probióticos , Selênio , Selênio/metabolismo , Selenometionina/metabolismo , Ácido Selenioso , Fermentação , Bifidobacterium longum/metabolismo , Selenito de Sódio/metabolismo , Selenito de Sódio/farmacologia
7.
J Agric Food Chem ; 70(22): 6726-6736, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35607941

RESUMO

Selenium (Se)-enriched probiotics are potential sources of organic Se in the human diet, but their application in food is debated because most selenized probiotics and their metabolites are not well-characterized. We analyzed a Se-enriched probiotic, Bifidobacterium longum DD98, to unveil its Se metabolite profiles by two-dimensional high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP MS) and HPLC-electrospray ionization Orbitrap MS. A major Se metabolite was identified as gamma-glutamyl-selenomethionine (γ-Glu-SeMet), which accounted for 42.5 ± 3.4% of water-soluble Se. Most of the remaining Se was present as SeMet (35.2 ± 0.6%) in a free or protein-bound form. In addition, 11 minor Se metabolites were identified, eight of which had not been reported before in probiotics. Six of the identified compounds contained γ-Glu-SeMet as the core structure, constituting a γ-Glu-SeMet family. This study demonstrates the presence of γ-Glu-SeMet in a probiotic, showing a different selenite metabolite pathway from that of Se-enriched yeast, and it offers an alternative and potentially attractive source of organic Se for food and feed supplementation.


Assuntos
Bifidobacterium longum , Probióticos , Compostos de Selênio , Selênio , Antioxidantes , Bifidobacterium longum/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Espectrometria de Massas , Probióticos/análise , Saccharomyces cerevisiae/metabolismo , Selênio/metabolismo , Compostos de Selênio/química , Selenometionina/metabolismo
8.
Sci Total Environ ; 809: 151090, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34688754

RESUMO

Ag, As, Cu, Pb and Zn were found to be the principal metallic contaminants of a post-mining area of Peru (Hualgayoc, Cajamarca). Study of metal distribution amongst roots, stems, and leaves of four indigenous hypertolerant plant species, Arenaria digyna, Puya sp., Hypericum laricifolium, Nicotiana thyrsiflora indicated significant translocation of Zn (0.6 < TF ≤ 10.0) and Cu (0.4 < TF ≤ 6.5) into aerial plant organs and substantial water-extractable fraction (20-60%) of these metals, except for A. digyna (root and stems). A study of the metal speciation by ultrahigh-performance size-exclusion (fast-SEC) and hydrophilic ion interaction (HILIC) liquid chromatography with dual ICP (inductively coupled plasma) and electrospray (ESI) Orbitrap MS detection revealed the presence of nicotianamine and deoxymugineic acid copper and zinc complexes in roots, stem and leaves of N. thyrsiflora and Puya sp., and nicotianamine alone in A. digyna. A previously unreported compound, dihydroxy-nicotianamine was identified as the most abundant Cu and Zn ligand in H. laricifolium. The presence of arsenobetaine and an arsenosugar was confirmed by ESI MS. Ag and Pb were hardly translocated to leaves and were found as high molecular species; one of the Pb-containing species co-eluted in fast-SEC-ICP MS with rhamnogalacturonan-II-Pb complex commonly found in in the walls of plants.


Assuntos
Hypericum , Metais Pesados , Poluentes do Solo , Ligantes , Metais , Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Zinco
9.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208081

RESUMO

Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.


Assuntos
Espectrometria de Massas , Selenoproteína P/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Valores de Referência , Selenocisteína/metabolismo , Selenoproteína P/sangue , Selenoproteína P/química
10.
Nanomaterials (Basel) ; 10(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731603

RESUMO

Due to the increasing release of metal-containing nanoparticles into the environment, the investigation of their interactions with plants has become a hot topic for many research fields. However, the obtention of reliable data requires a careful design of experimental model studies. The behavior of nanoparticles has to be comprehensively investigated; their stability in growth media, bioaccumulation and characterization of their physicochemical forms taken-up by plants, identification of the species created following their dissolution/oxidation, and finally, their localization within plant tissues. On the basis of their strong expertise, the authors present guidelines for studies of interactions between metal-containing nanoparticles and plants.

11.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722488

RESUMO

Selenium (Se) was found to inhibit the growth of the yeast Candida utilis ATCC 9950. Cells cultured in 30 mg selenite/L supplemented medium could bind 1368 µg Se/g of dry weight in their structures. Increased accumulation of trehalose and glycogen was observed, which indicated cell response to stress conditions. The activity of antioxidative enzymes (glutathione peroxidase, glutathione reductase, thioredoxin reductase, and glutathione S-transferase) was significantly higher than that of the control without Se addition. Most Se was bound to water-insoluble protein fraction; in addition, the yeast produced 20-30 nm Se nanoparticles (SeNPs). Part of Se was metabolized to selenomethionine (10%) and selenocysteine (20%). The HPLC-ESI-Orbitrap MS analysis showed the presence of five Se compounds combined with glutathione in the yeast. The obtained results form the basis for further research on the mechanisms of Se metabolism in yeast cells.


Assuntos
Antioxidantes/metabolismo , Candida/metabolismo , Proteínas Fúngicas/metabolismo , Nanopartículas Metálicas/química , Oxirredutases/metabolismo , Selênio/farmacologia , Selênio/química
12.
Metallomics ; 12(5): 758-766, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32211715

RESUMO

Liver and other tissues accumulate selenium (Se) when animals are supplemented with high dietary Se as inorganic Se. To further study selenometabolites in Se-deficient, Se-adequate, and high-Se liver, turkey poults were fed 0, 0.4, and 5 µg Se g-1 diet as Na2SeO3 (Se(iv)) in a Se-deficient (0.005 µg Se g-1) diet for 28 days, and the effects of Se status determined using HPLC-ICP-MS and HPLC-ESI-MS/MS. No selenomethionine (SeMet) was detected in liver in turkeys fed either this true Se-deficient diet or supplemented with inorganic Se, showing that turkeys cannot synthesize SeMet de novo from inorganic Se. Selenocysteine (Sec) was also below the level of detection in Se-deficient liver, as expected in animals with negligible selenoprotein levels. Sec content in high Se liver only doubled as compared to Se-adequate liver, indicating that the 6-fold increase in liver Se was not due to increases in selenoproteins. What increased dramatically in high Se liver were low molecular weight (MW) selenometabolites: glutathione-, cysteine- and methyl-conjugates of the selenosugar, seleno-N-acetyl galactosamine (SeGalNac). Substantial Se in Se-adequate liver was present as selenosugars decorating general proteins via mixed-disulfide bonds. In high-Se liver, these "selenosugar-decorated" proteins comprised ∼50% of the Se in the water-soluble fraction, in addition to low MW selenometabolites. In summary, more Se is present as the selenosugar moiety in Se-adequate liver, mostly decorating general proteins, than is present as Sec in selenoproteins. With high Se supplementation, increased selenosugar formation occurs, further increasing selenosugar-decorated proteins, but also increasing selenosugar linked to low MW thiols.


Assuntos
Fígado/metabolismo , Compostos de Selênio/análise , Selenocisteína/análise , Selenometionina/análise , Selenoproteínas/análise , Animais , Suplementos Nutricionais , Perus
13.
J Trace Elem Med Biol ; 59: 126466, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31958699

RESUMO

BACKGROUND: The sprouts of Brassica vegetables are known from their nutritional and chemopreventive values. Moreover, sprouts fortification with some trace elements, like selenium, may increase their importance in human diet. Thus, the aim of our study was to examine if selenium enrichment of kale and kohlrabi sprouts may influence their biochemical properties (phenolic acids and L-tryptophan content, antioxidant potential) or cytotoxic activity. Additional aim of the study was to evaluate the profile of selenium compounds and to describe the multidimensional interactions between the mentioned parameters. METHODS: Selenium content in the sprouts was evaluated by double-channel atomic fluorescence spectrometer AFS-230 with the flow hydride-generation system. Separation of selenium species in water soluble fraction was performed by size-exclusion LC-ICP-MS. The identification and quantification of phenolic acids and L-tryptophan was performed by HPLC. For antioxidant activity DPPH and FRAP methods were used. Cytotoxic activity of the sprouts extracts on a panel of human metastatic carcinoma cells was evaluated by MTT test. RESULTS: Selenium content in the fortified sprouts was several orders of magnitude higher than in the unfortified ones. Only small percentage of supplemented selenium (ca. 10 %) was incorporated into the sprouts as seleno-L-methionine, while the other detected selenium species remained unidentified. Selenium fortification differently stimulated the production of phenolic acids (sinapic, chlorogenic, isochlorogenic and caffeic acid) in the tested sprouts, depending on the particular species, selenium dose and the investigated compound. PCA analysis revealed strong correlation between antioxidant parameters and phenolic acids and L-tryptophan, while Se correlated only with caffeic acid. The sprouts extracts (≥1 mg/mL) showed cytotoxic potency to all the studied cancer cell lines (SW480, SW620, HepG2, SiHa), regardless the selenium supplementation. CONCLUSION: Se-fortified kale and kohlrabi sprouts are good candidates for functional food ingredients. Moreover, these results indicate that the sprouts enriched with sodium selenite show higher nutritional value, without significant changes in their cytotoxic activity.


Assuntos
Antioxidantes/análise , Brassica/química , Citotoxinas/análise , Alimento Funcional/análise , Extratos Vegetais/análise , Sementes/química , Selênio/análise , Antioxidantes/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Picratos/antagonistas & inibidores , Extratos Vegetais/farmacologia , Selênio/farmacologia , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
J Mol Biol ; 431(22): 4381-4407, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31442478

RESUMO

Selenoproteins typically contain a single selenocysteine, the 21st amino acid, encoded by a context-redefined UGA. However, human selenoprotein P (SelenoP) has a redox-functioning selenocysteine in its N-terminal domain and nine selenium transporter-functioning selenocysteines in its C-terminal domain. Here we show that diverse SelenoP genes are present across metazoa with highly variable numbers of Sec-UGAs, ranging from a single UGA in certain insects, to 9 in common spider, and up to 132 in bivalve molluscs. SelenoP genes were shaped by a dynamic evolutionary process linked to selenium usage. Gene evolution featured modular expansions of an ancestral multi-Sec domain, which led to particularly Sec-rich SelenoP proteins in many aquatic organisms. We focused on molluscs, and chose Pacific oyster Magallana gigas as experimental model. We show that oyster SelenoP mRNA with 46 UGAs is translated full-length in vivo. Ribosome profiling indicates that selenocysteine specification occurs with ∼5% efficiency at UGA1 and approaches 100% efficiency at distal 3' UGAs. We report genetic elements relevant to its expression, including a leader open reading frame and an RNA structure overlapping the initiation codon that modulates ribosome progression in a selenium-dependent manner. Unlike their mammalian counterparts, the two SECIS elements in oyster SelenoP (3'UTR recoding elements) do not show functional differentiation in vitro. Oysters can increase their tissue selenium level up to 50-fold upon supplementation, which also results in extensive changes in selenoprotein expression.


Assuntos
Códon de Terminação/genética , Moluscos/química , Moluscos/genética , Selenoproteína P/química , Selenoproteína P/genética , Animais , Evolução Biológica , Biossíntese de Proteínas , Selenocisteína/química , Selenocisteína/genética
15.
Metallomics ; 11(9): 1498-1505, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31389928

RESUMO

Palladium is recognized as a technologically critical element (TCE) because of its massive use in automobile exhaust gas catalytic converters. The release of Pd into the environment in the form of nanoparticles of various size and chemical composition requires an understanding of their metabolism by leaving organisms. We provide here for the first time a chemical speciation insight into the identity of the ligands produced or used by a plant Sinapis alba L. exposed in hydropony to Pd nanoparticles and soluble Pd (nitrate). The analytical method developed was based on the concept of 2D HPLC with parallel inductively coupled plasma mass spectrometry (ICP MS) and electrospray MS detection. Size exclusion chromatography - ICP MS of the plant extracts showed no difference between the speciation of Pd after the exposure to nanoparticles and after that to Pd2+ which indicated the reactivity and dissolution of Pd nanoparticles. A comparative investigation of the Pd speciation in a control plant extract spiked with Pd2+ and of an extract of a plant having metabolized palladium indicated the response of the Sinapis alba by the formation of a Pd-histidine complex. The complex was identified via Orbitrap MS; the HPLC-MS chromatogram produced two peaks at m/z 415.0341 each corresponding to a Pd-His2 complex. An investigation by ion-mobility MS revealed a difference in their collision cross section indicating that the complexes present varied in terms of spatial conformation. A number of other Pd complexes with different ligands (including nicotianamine) circulating in the plant were detected but these ligands were already observed in a control plant and their concentrations were not affected by the exposure to Pd.


Assuntos
Histidina/metabolismo , Paládio/metabolismo , Sinapis/metabolismo , Exposição Ambiental , Poluentes Ambientais/metabolismo , Nanopartículas/metabolismo
16.
Nutrients ; 11(7)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277500

RESUMO

Selenium is an essential trace element which is incorporated in the form of a rare amino acid, the selenocysteine, into an important group of proteins, the selenoproteins. Among the twenty-five selenoprotein genes identified to date, several have important cellular functions in antioxidant defense, cell signaling and redox homeostasis. Many selenoproteins are regulated by the availability of selenium which mostly occurs in the form of water-soluble molecules, either organic (selenomethionine, selenocysteine, and selenoproteins) or inorganic (selenate or selenite). Recently, a mixture of selenitriglycerides, obtained by the reaction of selenite with sunflower oil at high temperature, referred to as Selol, was proposed as a novel non-toxic, highly bioavailable and active antioxidant and antineoplastic agent. Free selenite is not present in the final product since the two phases (water soluble and oil) are separated and the residual water-soluble selenite discarded. Here we compare the assimilation of selenium as Selol, selenite and selenate by various cancerous (LNCaP) or immortalized (HEK293 and PNT1A) cell lines. An approach combining analytical chemistry, molecular biology and biochemistry demonstrated that selenium from Selol was efficiently incorporated in selenoproteins in human cell lines, and thus produced the first ever evidence of the bioavailability of selenium from selenized lipids.


Assuntos
Óleos de Plantas/metabolismo , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Compostos de Selênio/metabolismo , Selenoproteínas/biossíntese , Triglicerídeos/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos
17.
Anal Chim Acta ; 1058: 117-126, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-30851845

RESUMO

Materials in direct contact with food should be monitored for the presence of species able to migrate into food. A direct method based on liquid extraction surface analysis nanoelectrospray mass spectrometry (LESA-nanoESI-MS) was developed for the analysis of the migrating species from a polymer film. Different types of molecules: post-polymerization residues, degradation products (oligomers resulting from polymer recycling, products of polymer oxidative degradation) and anti-oxidant additives (vitamin E) were demonstrated to be detected and identified, and determined quantitatively if relevant calibration standards are available. The method was validated by a comparison a standard method based on with bulk extraction mass spectrometry. It offers considerable advantages over the latter in terms of drastically reduced analysis time and solvent consumption. Also, LESA-nanoESI-MS produced simpler spectra (limited to compounds able to migrate into food) than Direct Analysis in Real Time (DART).


Assuntos
Embalagem de Alimentos , Plásticos/análise , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Antioxidantes/análise , Antioxidantes/química , Inocuidade dos Alimentos/métodos , Óleo de Semente do Linho/química , Vitamina E/análise , Vitamina E/química
18.
Biochim Biophys Acta Gen Subj ; 1862(11): 2493-2505, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29660373

RESUMO

BACKGROUND: Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. METHODS: We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. RESULTS: We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. CONCLUSIONS: We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. GENERAL SIGNIFICANCE: We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture.

19.
Food Chem ; 237: 1196-1201, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28763969

RESUMO

Torula yeast (Candida utilis) was found to metabolize selenium in a totally different way to Brewer's yeast (S. cerevisiae) leading to the biosynthesis of selenohomolanthionine (SeHLan), a major selenium compound accounting for 60-80% of the total selenium. The identity of SeHLan was confirmed by retention time matching in hydrophilic ion interaction chromatography (HILIC) with inductively coupled plasma mass spectrometric detection (ICP MS) using a custom synthesized standard molecule and by HILIC - Orbitrap MS and MS-MS fragmentation. Selenohomolanthionine escapes the current assays for the organic character of Se-rich yeast based on the protein-bound selenomethionine determination. A HILIC - ICP MS method was developed for the quantitative determination of selenohomolanthionine in yeast supplements with a detection limit of 146ng/g.


Assuntos
Cryptococcus/química , Cromatografia Líquida de Alta Pressão , Homocisteína/análogos & derivados , Espectrometria de Massas , Compostos Organosselênicos , Selênio , Compostos de Selênio
20.
J Agric Food Chem ; 64(24): 4975-81, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27214173

RESUMO

The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (<1 ppm) molecule-specific detection by electrospray-Orbitrap MS(3) was developed. For the first time, a non-aqueous mobile phase gradient was used in reversed-phase HPLC-ICP MS for the separation of a complex mixture of selenospecies and a mathematical correction of the background signal was developed. The identical chromatographic conditions served for the sample introduction into electrospray MS. Two types of samples were analyzed: sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol trioleinate), of which the extrapolation allowed for the prediction of the identity [glycerol dioleinate-stearate (OOS) and glycerol oleinate-distearate (OSS)] of the nonpolar species detected by ICP MS in the oil but not detected by electrospray MS.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Óleos de Plantas/química , Selênio/química , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Óleo de Girassol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA