Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Syst Appl Microbiol ; 45(4): 126339, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35714383

RESUMO

From the metagenome of a carbamazepine amended selective enrichment culture the genome of a new to science bacterial species affiliating with the genus Nocardioides was reconstructed. From the same enrichment an aerobic actinobacterium, strain CBZ_1T, sharing 99.4% whole-genome sequence similarity with the reconstructed Nocardioides sp. bin genome was isolated. On the basis of 16S rRNA gene sequence similarity the novel isolate affiliated to the genus Nocardioides, with the closest relatives Nocardioides kongjuensis DSM19082T (98.4%), Nocardioides daeguensis JCM17460T (98.4%) and Nocardioides nitrophenolicus DSM15529T (98.2%). Using a polyphasic approach it was confirmed that the isolate CBZ_1T represents a new phyletic lineage within the genus Nocardioides. According to metagenomic, metatranscriptomic studies and metabolic analyses strain CZB_1T was abundant in both carbamazepine and ibuprofen enrichments, and harbors biodegradative genes involved in the biodegradation of pharmaceutical compounds. Biodegradation studies supported that the new species was capable of ibuprofen biodegradation. After 7 weeks of incubation, in mineral salts solution supplemented with glucose (3 g l-1) as co-substrate, 70% of ibuprofen was eliminated by strain CBZ_1T at an initial conc. of 1.5 mg l-1. The phylogenetic, phenotypic and chemotaxonomic data supported the classification of strain CBZ_1T to the genus Nocardioides, for which the name Nocardioides carbamazepini sp. nov. (CBZ_1T = NCAIM B.0.2663 = LMG 32395) is proposed. To the best of our knowledge, this is the first study that reports simultaneous genome reconstruction of a new to science bacterial species using metagenome binning and at the same time the isolation of the same novel bacterial species.


Assuntos
Actinomycetales , Nocardioides , Técnicas de Tipagem Bacteriana , Composição de Bases , Biofilmes , Carbamazepina , DNA Bacteriano/genética , Ácidos Graxos/análise , Ibuprofeno , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/química
2.
AMB Express ; 12(1): 4, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35075552

RESUMO

In this study, we report on the development of a novel bacterial consortium, consisting of Variovorax paradoxus and Pseudomonas veronii isolates, applicable in the biodegradation of all six BTEX compounds (benzene, toluene, ethylbenzene, o-, m- and p-xylene) and the bioremediation of contaminated sites. The co-cultivability of the selected bacterial isolates was determined in nutrient-rich medium, as well as in BTEX amended mineral salts solution using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and CFU determinations. BTEX biodegradation capacity of the two-strain consortium was assessed in mineral salts solution, where a series of BTEX depletions and supplementations occurred, as well as in a real, BTEX polluted environmental sample (contaminated groundwater) in the presence of the autochthonous bacterial community. The obtained results indicated that the developed bacterial consortium is very efficient in BTEX biodegradation. Under laboratory conditions, the acclimatized bacterial consortium completely degraded the BTEX mixture with a concentration as high as 20 mg l-1 in a mineral salt medium within a short span of 6 h. Close to in situ groundwater conditions (incubated at 15 °C under static conditions in the absence of light), groundwater microcosms containing the autochthonous bacterial community inoculated with the developed bacterial consortium showed more efficient toluene, o-, m-and p-xylene biodegradation capacity than microcosms containing solely the native microbial population originally found in the groundwater. In the inoculated microcosms, after 115 h of incubation the concentration (~ 1.7 mg l-1 each) of o-, m- and p-xylene decreased to zero, whereas in the non-inoculated microcosms the concentration of xylene isomers was still 0.2, 0.3 and 0.3 mg l-1, respectively. The allochthonous bioaugmentation of the contaminated groundwater with the obtained inoculant was successful and manifested in a better BTEX degradation rate. Our results suggest that the obtained bacterial consortium can be a new, stable and efficient bioremediation agent applicable in the synergistic elimination of BTEX compounds from contaminated sites.

3.
Int J Syst Evol Microbiol ; 68(9): 2807-2812, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29975186

RESUMO

A Gram-negative, aerobic, slightly yellow-pigmented bacterium, designated as SKLS-A10T, was isolated from groundwater sample of the 'Siklós' petroleum hydrocarbon contaminated site (Hungary). Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain SKLS-A10T formed a distinct phyletic lineage within the genus Sphingobium. It shared the highest 16S rRNA gene homology with Sphingobium abikonense DSM 23268T (97.29 %), followed by Sphingobium lactosutens DSM 23389T (97.23 %), Sphingobium phenoxybenzoativorans KCTC 42448T (97.16 %) and Sphingobium subterraneum NBRC 109814T (96.74 %). The predominant fatty acids (>5 % of the total) are C18 : 1ω7c, C14 : 0 2-OH, C16 : 1ω7c/iso C15 : 0 2-OH, C17 : 1ω6c and C16 : 0. The major ubiquinone is Q-10. The predominant polyamine is spermidine. The major polar lipids are sphingoglycolipid and diphosphatidylglycerol. The DNA G+C content of strain SKLS-A10T is 65.9 mol%. On the basis of evidence from this taxonomic study using a polyphasic approach, strain SKLS-A10T represents a novel species of the genus Sphingobium for which the name Sphingobiumaquiterrae sp. nov. is proposed. The type strain is SKLS-A10T (=DSM 106441T=NCAIM B. 02634T).


Assuntos
Água Subterrânea/microbiologia , Filogenia , Sphingomonadaceae/classificação , Poluentes Químicos da Água/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hungria , Hibridização de Ácido Nucleico , Petróleo/metabolismo , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Tolueno/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/química , Xilenos/metabolismo
4.
Int J Syst Evol Microbiol ; 65(Pt 1): 274-279, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25342113

RESUMO

A floc-forming, Gram-stain-negative, petroleum hydrocarbon-degrading bacterial strain, designated Buc(T), was isolated from a petroleum hydrocarbon-contaminated site in Hungary. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Buc(T) formed a distinct phyletic lineage within the genus Zoogloea. Its closest relative was found to be Zoogloea caeni EMB43(T) (97.2% 16S rRNA gene sequence similarity) followed by Zoogloea oryzae A-7(T) (95.9%), Zoogloea ramigera ATCC 19544(T) (95.5%) and Zoogloea resiniphila DhA-35(T) (95.4%). The level of DNA-DNA relatedness between strain Buc(T) and Z. caeni EMB43(T) was 31.6%. Cells of strain Buc(T) are facultatively aerobic, rod-shaped, and motile by means of a polar flagellum. The strain grew at temperatures of 5-35 °C (optimum 25-28 °C), and at pH 6.0-9.0 (optimum 6.5-7.5). The predominant fatty acids were C16:0, C10 : 0 3-OH, C12:0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The major respiratory quinone was ubiquinone-8 (Q-8) and the predominant polar lipid was phosphatidylethanolamine. The genomic DNA G+C content was 63.2 mol%. On the basis of the chemotaxonomic, molecular and phenotypic data, isolate Buc(T) is considered to represent a novel species of the genus Zoogloea, for which the name Zoogloea oleivorans sp. nov. is proposed. The type strain is Buc(T) ( =DSM 28387(T) =NCAIM B 02570(T)).


Assuntos
Biofilmes , Petróleo/microbiologia , Filogenia , Zoogloea/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Biodegradação Ambiental , DNA Bacteriano/genética , Ácidos Graxos/química , Hungria , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Zoogloea/genética , Zoogloea/isolamento & purificação
5.
World J Microbiol Biotechnol ; 29(11): 1989-2002, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23632908

RESUMO

Nowadays, because of substantial use of petroleum-derived fuels the number and extension of hydrocarbon polluted terrestrial ecosystems is in growth worldwide. In remediation of aforementioned sites bioremediation still tends to be an innovative, environmentally attractive technology. Although huge amount of information is available concerning the hydrocarbon degradation potential of cultivable hydrocarbonoclastic bacteria little is known about the in situ long-term effects of petroleum derived compounds on the structure of soil microbiota. Therefore, in this study our aim was to determine the long-term impact of total petroleum hydrocarbons (TPHs), volatile petroleum hydrocarbons (VPHs), total alkyl benzenes (TABs) as well as of polycyclic aromatic hydrocarbons (PAHs) on the structure of bacterial communities of four different contaminated soil samples. Our results indicated that a very high amount of TPH affected positively the diversity of hydrocarbonoclastic bacteria. This finding was supported by the occurrence of representatives of the α-, ß-, γ-Proteobacteria, Actinobacteria, Flavobacteriia and Bacilli classes. High concentration of VPHs and TABs contributed to the predominance of actinobacterial isolates. In PAH impacted samples the concentration of PAHs negatively correlated with the diversity of bacterial species. Heavily PAH polluted soil samples were mainly inhabited by the representatives of the ß-, γ-Proteobacteria (overwhelming dominance of Pseudomonas sp.) and Actinobacteria.


Assuntos
Actinobacteria/isolamento & purificação , Hidrocarbonetos/química , Microbiota , Petróleo , Proteobactérias/isolamento & purificação , Microbiologia do Solo , Poluentes do Solo/química , Actinobacteria/genética , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Biodiversidade , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ecossistema , Evolução Molecular , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Proteobactérias/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
6.
Syst Appl Microbiol ; 33(7): 398-406, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20970942

RESUMO

Detection of catechol 2,3-dioxygenase genes in aromatic hydrocarbon contaminated environments gives the opportunity to measure the diversity of bacteria involved in the degradation of the contaminants under aerobic conditions. In this study, we investigated the diversity and distribution of Comamonadaceae family (Betaproteobacteria) related catechol 2,3-dioxygenase genes, which belong to the I.2.C subfamily of extradiol dioxygenase genes. These catabolic genes encode enzymes supposed to function under hypoxic conditions as well, and may play a notable role in BTEX degradation in oxygen limited environments. Therefore, their diversity was analyzed in oxygen limited, petroleum hydrocarbon contaminated groundwater by terminal restriction fragment length polymorphism and cloning. Subfamily I.2.C related catechol 2,3-dioxygenase genes were detected in every investigated groundwater sample and a dynamic change was observed in the case of the structure of C23O gene possessing bacterial communities. To link the metabolic capability to the microbial structure, 16S rRNA gene-based clone libraries were generated and it was concluded that Betaproteobacteria were abundant in the bacterial communities of the contaminated samples. These results support the opinion that Betaproteobacteria may play a significant role in BTEX degradation under hypoxic conditions.


Assuntos
Betaproteobacteria , Catecol 2,3-Dioxigenase/genética , Comamonadaceae , Água Doce/microbiologia , RNA Ribossômico 16S , Poluentes Químicos da Água/metabolismo , Anaerobiose , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Betaproteobacteria/fisiologia , Biodegradação Ambiental , Biodiversidade , Clonagem Molecular , Comamonadaceae/classificação , Comamonadaceae/genética , Comamonadaceae/isolamento & purificação , Comamonadaceae/fisiologia , DNA Ribossômico/genética , Genes de RNAr , Hungria , Hidrocarbonetos Aromáticos/metabolismo , Dados de Sequência Molecular , Petróleo/microbiologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA