Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 281: 120384, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739198

RESUMO

The seemingly effortless ability of our auditory system to rapidly detect new events in a dynamic environment is crucial for survival. Whether the underlying brain processes are innate is unknown. To answer this question, electroencephalography was recorded while regularly patterned (REG) versus random (RAND) tone sequences were presented to sleeping neonates. Regular relative to random sequences elicited differential neural responses after only a single repetition of the pattern indicating the existence of an innate capacity of the auditory system to detect auditory sequential regularities. We show that the newborn auditory system accumulates evidence only somewhat longer than the minimum amount determined by the ideal Bayesian observer model (the prediction from a variable-order Markov chain model) before detecting a repeating pattern. Thus, newborns can quickly form representations for regular features of the sound input, preparing the way for learning the contingencies of the environment.


Assuntos
Percepção Auditiva , Potenciais Evocados Auditivos , Humanos , Recém-Nascido , Estimulação Acústica , Potenciais Evocados Auditivos/fisiologia , Percepção Auditiva/fisiologia , Teorema de Bayes , Encéfalo/fisiologia , Eletroencefalografia
2.
Sci Rep ; 13(1): 10287, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355709

RESUMO

The ability to process sound duration is crucial already at a very early age for laying the foundation for the main functions of auditory perception, such as object perception and music and language acquisition. With the availability of age-appropriate structural anatomical templates, we can reconstruct EEG source activity with much-improved reliability. The current study capitalized on this possibility by reconstructing the sources of event-related potential (ERP) waveforms sensitive to sound duration in 4- and 9-month-old infants. Infants were presented with short (200 ms) and long (300 ms) sounds equiprobable delivered in random order. Two temporally separate ERP waveforms were found to be modulated by sound duration. Generators of these waveforms were mainly located in the primary and secondary auditory areas and other language-related regions. The results show marked developmental changes between 4 and 9 months, partly reflected by scalp-recorded ERPs, but appearing in the underlying generators in a far more nuanced way. The results also confirm the feasibility of the application of anatomical templates in developmental populations.


Assuntos
Córtex Auditivo , Encéfalo , Reprodutibilidade dos Testes , Potenciais Evocados , Percepção Auditiva , Eletroencefalografia/métodos , Potenciais Evocados Auditivos , Estimulação Acústica
3.
Brain Res ; 1805: 148246, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657631

RESUMO

To process speech in a multi-talker environment, listeners need to segregate the mixture of incoming speech streams and focus their attention on one of them. Potentially, speech prosody could aid the segregation of different speakers, the selection of the desired speech stream, and detecting targets within the attended stream. For testing these issues, we recorded behavioral responses and extracted event-related potentials and functional brain networks from electroencephalographic signals recorded while participants listened to two concurrent speech streams, performing a lexical detection and a recognition memory task in parallel. Prosody manipulation was applied to the attended speech stream in one group of participants and to the ignored speech stream in another group. Naturally recorded speech stimuli were either intact, synthetically F0-flattened, or prosodically suppressed by the speaker. Results show that prosody - especially the parsing cues mediated by speech rate - facilitates stream selection, while playing a smaller role in auditory stream segmentation and target detection.


Assuntos
Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Fala , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Eletroencefalografia/métodos
4.
Cortex ; 130: 387-400, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32750602

RESUMO

Speech unfolds at different time scales. Therefore, neuronal mechanisms involved in speech processing should likewise operate at different (corresponding) time scales. The present study aimed to identify speech units relevant for selecting speech streams in a multi-talker situation. Functional connectivity was extracted from the continuous EEG while young adults detected targets within one stream in the presence of a different, task-irrelevant stream. In two separate groups, either the attended or the ignored stream was manipulated so that it contained intact, word-wise scrambled, syllable-wise scrambled, or spectrally scrambled speech. We found functional brain networks that were sensitive to the difference between the situations when speech was meaningful at sentence vs. at word level, but not between when speech was meaningful at word vs. only valid at syllable level, irrespective of whether the speech units were manipulated in the attended or the ignored stream. These functional brain networks operated in the delta and theta bands corresponding to integrating information from longer time windows. Further, the networks, which could be linked with suppressing information from the to-be-ignored stream included brain areas associated with high-level processing of speech. These results are compatible with late filtering models of auditory attention, as they suggest that the length of intact speech units in the to-be-ignored stream affects processes of attentional selection. However, we found no evidence for speech-to-brain coupling differences as a function of the intact unit of speech in either stream. Thus, although the current results do not rule out that early processes of speech processing affect stream selection in a cocktail party situation, neither do they provide supporting for it.


Assuntos
Córtex Auditivo , Percepção da Fala , Estimulação Acústica , Atenção , Encéfalo , Eletroencefalografia , Humanos , Fala , Adulto Jovem
5.
PLoS One ; 14(2): e0212754, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30818389

RESUMO

Human listeners can focus on one speech stream out of several concurrent ones. The present study aimed to assess the whole-brain functional networks underlying a) the process of focusing attention on a single speech stream vs. dividing attention between two streams and 2) speech processing on different time-scales and depth. Two spoken narratives were presented simultaneously while listeners were instructed to a) track and memorize the contents of a speech stream and b) detect the presence of numerals or syntactic violations in the same ("focused attended condition") or in the parallel stream ("divided attended condition"). Speech content tracking was found to be associated with stronger connectivity in lower frequency bands (delta band- 0,5-4 Hz), whereas the detection tasks were linked with networks operating in the faster alpha (8-10 Hz) and beta (13-30 Hz) bands. These results suggest that the oscillation frequencies of the dominant brain networks during speech processing may be related to the duration of the time window within which information is integrated. We also found that focusing attention on a single speaker compared to dividing attention between two concurrent speakers was predominantly associated with connections involving the frontal cortices in the delta (0.5-4 Hz), alpha (8-10 Hz), and beta bands (13-30 Hz), whereas dividing attention between two parallel speech streams was linked with stronger connectivity involving the parietal cortices in the delta and beta frequency bands. Overall, connections strengthened by focused attention may reflect control over information selection, whereas connections strengthened by divided attention may reflect the need for maintaining two streams in parallel and the related control processes necessary for performing the tasks.


Assuntos
Atenção/fisiologia , Comportamento Multitarefa/fisiologia , Rede Nervosa/fisiologia , Percepção da Fala/fisiologia , Estimulação Acústica , Córtex Auditivo/fisiologia , Eletroencefalografia , Feminino , Lobo Frontal/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Lobo Parietal/fisiologia , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 114(36): 9743-9748, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827336

RESUMO

Studies of auditory looming bias have shown that sources increasing in intensity are more salient than sources decreasing in intensity. Researchers have argued that listeners are more sensitive to approaching sounds compared with receding sounds, reflecting an evolutionary pressure. However, these studies only manipulated overall sound intensity; therefore, it is unclear whether looming bias is truly a perceptual bias for changes in source distance, or only in sound intensity. Here we demonstrate both behavioral and neural correlates of looming bias without manipulating overall sound intensity. In natural environments, the pinnae induce spectral cues that give rise to a sense of externalization; when spectral cues are unnatural, sounds are perceived as closer to the listener. We manipulated the contrast of individually tailored spectral cues to create sounds of similar intensity but different naturalness. We confirmed that sounds were perceived as approaching when spectral contrast decreased, and perceived as receding when spectral contrast increased. We measured behavior and electroencephalography while listeners judged motion direction. Behavioral responses showed a looming bias in that responses were more consistent for sounds perceived as approaching than for sounds perceived as receding. In a control experiment, looming bias disappeared when spectral contrast changes were discontinuous, suggesting that perceived motion in distance and not distance itself was driving the bias. Neurally, looming bias was reflected in an asymmetry of late event-related potentials associated with motion evaluation. Hence, both our behavioral and neural findings support a generalization of the auditory looming bias, representing a perceptual preference for approaching auditory objects.


Assuntos
Percepção Auditiva/fisiologia , Estimulação Acústica , Adulto , Viés de Atenção/fisiologia , Córtex Auditivo/fisiologia , Sinais (Psicologia) , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Modelos Neurológicos , Localização de Som/fisiologia , Adulto Jovem
7.
Planta ; 244(6): 1303-1313, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27541495

RESUMO

MAIN CONCLUSION: Based on the effects of inorganic salts on chloroplast Fe uptake, the presence of a voltage-dependent step is proposed to play a role in Fe uptake through the outer envelope. Although iron (Fe) plays a crucial role in chloroplast physiology, only few pieces of information are available on the mechanisms of chloroplast Fe acquisition. Here, the effect of inorganic salts on the Fe uptake of intact chloroplasts was tested, assessing Fe and transition metal uptake using bathophenantroline-based spectrophotometric detection and plasma emission-coupled mass spectrometry, respectively. The microenvironment of Fe was studied by Mössbauer spectroscopy. Transition metal cations (Cd2+, Zn2+, and Mn2+) enhanced, whereas oxoanions (NO3-, SO42-, and BO33-) reduced the chloroplast Fe uptake. The effect was insensitive to diuron (DCMU), an inhibitor of chloroplast inner envelope-associated Fe uptake. The inorganic salts affected neither Fe forms in the uptake assay buffer nor those incorporated into the chloroplasts. The significantly lower Zn and Mn uptake compared to that of Fe indicates that different mechanisms/transporters are involved in their acquisition. The enhancing effect of transition metals on chloroplast Fe uptake is likely related to outer envelope-associated processes, since divalent metal cations are known to inhibit Fe2+ transport across the inner envelope. Thus, a voltage-dependent step is proposed to play a role in Fe uptake through the chloroplast outer envelope on the basis of the contrasting effects of transition metal cations and oxoaninons.


Assuntos
Transporte Biológico Ativo/fisiologia , Cloroplastos/metabolismo , Ferro/metabolismo , Beta vulgaris/metabolismo , Beta vulgaris/fisiologia , Transporte Biológico Ativo/efeitos dos fármacos , Cádmio/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/fisiologia , Diurona/farmacologia , Herbicidas/farmacologia , Manganês/metabolismo , Espectroscopia de Mossbauer , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA